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1. Introduction 

1.1 Overview 

Background 

Moment Distribution is an iterative method of solving an indeterminate structure. It 

was developed by Prof. Hardy Cross in the US in the 1920s in response to the highly 

indeterminate structures being built at the time. The method is a ‘relaxation method’ 

in that the results converge to the true solution through successive approximations. 

Moment distribution is very easily remembered and extremely useful for checking 

computer output of highly indeterminate structures. 

 

A good background on moment distribution can be got from:  

 http://www.emis.de/journals/NNJ/Eaton.html 

 

 

Hardy Cross (1885-1959) 
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1.2 The Basic Idea 

Sample Beam 

We first consider a two-span beam with only one possible rotation. This beam is 

subject to different loading on its two spans. The unbalanced loading causes a 

rotation at B, B , to occur, as shown: 

 

 

 

 

To analyse this structure, we use the regular tools of superposition and compatibility 

of displacement. We will make the structure more indeterminate first, and then 

examine what happens to the extra unknown moment introduced as a result.  

 

Dr. C. Caprani 5



Structural Analysis III 

Superposition 

The following diagrams show the basic superposition used: 

 

 

 

The newly introduced fixed support does not allow any rotation of joint B. Therefore 

a net moment results at this new support – a moment that ‘balances’ the loading, 

BalM . Returning to the original structure, we account for the effect of the introduced 

restraint by applying BalM  in the opposite direction. In this way, when the 

superposition in the diagram is carried out, we are left with our original structure. 
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The Balancing Moment 

The moment BalM  ‘goes into’ each of the spans AB and BC. The amount of BalM  in 

each span is BAM  and BCM  respectively. That is, BalM  splits, or distributes, itself into 

BAM  and BCM . We next analyse each of the spans separately for the effects of BAM  

and BCM . This is summarized in the next diagram: 
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The Fixed-End-Moments 

The balancing moment arises from the applied loads to each span. By preventing 

joint B from rotating (having placed a fixed support there), a moment will result in 

the support. We can find this moment by examining the fixed end moments (FEMs) 

for each fixed-fixed span and its loading: 

 

 

 

Both of these new “locked” beams have fixed end moment (FEM) reactions as: 

 

 

 

And for the particular type of loading we can work out these FEMs from tables of 

FEMs: 
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Note the sign convention: 

 

 
 Anti-clockwise is positive 

 
 Clockwise is negative 

 

From the locked beams AB and BC, we see that at B (in general) the moments do not 

balance (if they did the rotation, B , would not occur). That is: 

 

 
2
1 2 0

12 8 Bal

wL PL
M     

 

And so we have: 

 

 
2

2 1

8 12Bal

PL wL
M    

 

In which the sign (i.e. the direction) will depend on the relative values of the two 

FEMs caused by the loads. 

 

The balancing moment is the moment required at B in the original beam to stop B 

rotating. Going back to the basic superposition, we find the difference in the two 

FEMs at the joint and apply it as the balancing moment in the opposite direction. 

 

Next we need to find out how the balancing moment splits itself into BAM  and BCM . 
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2. Development 

2.1 Carry-Over Factor 

The carry-over factor relates the moment applied at one end of a beam to the resulting 

moment at the far end. We find this for the beams of interest. 

 

Fixed-Pinned 

For a fixed-pinned beam, subject to a moment at the pinned end, we have: 

 

 

 

To solve this structure, we note first that the deflection at B in structure I is zero, i.e. 

0B 

BA

 and so since the tangent at A is horizontal, the vertical intercept is also zero, 

i.e. . Using superposition, we can calculate 0  IBA  as: 

 

      I IIBA BA BA    
III

 

 

where the subscript relates to the structures above. Thus we have, by Mohr’s Second 

Theorem: 
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1 1 2

0
2 3 2 3BA B A

L L
EI M L M L                        

 

 

And so, 

 

 

2 2

6 3
3 6

1

2

B A

B A

A B

M L M L

M M

M M





  

 

 

The factor of 1
2  that relates AM  to BM  is known as the carry-over factor (COF). 

The positive sign indicates that AM  acts in the same direction as BM : 

 

 

 

We generalize this result slightly and say that for any remote end that has the ability 

to restrain rotation: 

 

1

2
COF    for an end that has rotational restraint 
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Pinned-Pinned 

As there can be no moment at a pinned end there is no carry over to the pinned end: 

 

 

 

We generalize this from a pinned-end to any end that does not have rotational 

restraint: 

 

There is no carry-over to an end not rotationally restrained. 
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2.2 Fixed-End Moments 

Direct Loading  

When the joints are initially locked, all spans are fixed-fixed and the moment 

reactions (FEMs) are required. These are got from standard solutions: 

 

MA Configuration MB 

8

PL
  

P

L/2

MA

A B

MB

L/2
 

8

PL
  

2

12

wL
  

w

L

MA

A B

MB

 

2

12

wL
  

2

2

Pab

L
  

P

a

MA

A B

MB

b
L

 

2

2

Pa b

L
  

3

16

PL
  

P

L/2

MA

A BL/2
 

- 

2

8

wL
  

w

L

MA

A B

 

- 

 
2

2

2

Pab L a

L


  

P

a

MA

A b
L

B

 

- 
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Support Settlement 

The movement of supports is an important design consideration, especially in 

bridges, as the movements can impose significant additional moments in the 

structure. To allow for this we consider two cases: 

 

Fixed-Fixed Beam 

Consider the following movement which imposes moments on the beam: 

 

 

 

At C the deflection is 2 ; hence we must have ABFEM FEM BA . Using Mohr’s 

Second Theorem, the vertical intercept from C to A is: 

 

 
2

2

2
1 2

2 2 3 2 12

6

CA

AB AB

AB BA

L FEM L FEM L

EI E

EI
FEM FEM

I

L


 

             


  
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Fixed-Pinned Beam 

Again, the support settlement imposes moments as: 

 

Following the same procedure: 

 

 

2

2

1 2

2 3

3

AB AB
BA

AB

FEM FEM L
L L

3EI E

EI
FEM

I

L

                


 
 

 

In summary then we have: 

 

MA Configuration MB 

2

6EI

L


  

MA

A B

MB

L



 

2

6EI

L


  

2

3EI

L


  

L

MA

A B 

 

- 
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2.3 Rotational Stiffness 

Concept 

Recall that F K  where F is a force, K is the stiffness of the structure and   is the 

resulting deflection. For example, for an axially loaded rod or bar: 

 

 
EA

F
L

   

 

And so K EA L . Similarly, when a moment is applied to the end of a beam, a 

rotation results, and so we also have: 

 

 M K    

Note that K  can be thought of as the moment required to cause a rotation of 1 

radian. We next find the rotational stiffnesses for the relevant types of beams. 

 

Fixed-Pinned Beam 

To find the rotational stiffness for this type of beam we need to find the rotation, B , 

for a given moment applied at the end, BM : 
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We break the bending moment diagram up as follows, using our knowledge of the 

carry-over factor: 

 

The change in rotation from A to B is found using Mohr’s First Theorem and the fact 

that the rotation at the fixed support, A ,  is zero: 

 

 AB B Ad B       

 

Thus we have: 

 

1 1

2 2

2 4

4

4

B B A

B B

B

B B

EI M L M L

M L M L

M L

L
M

EI





 

 





 

And so, 

 
4

B B

EI
M

L
  

 

And the rotational stiffness for this type of beam is: 

 

 
4EI

K
L   
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Pinned-Pinned Beam 

For this beam we use an alternative method to relate moment and rotation: 

 

 

 

By Mohr’s Second Theorem, and the fact that AB BL  , we have: 

 

 
2

1 2

2 3

3

3

AB B

B
B

B B

EI M L

M L
EI L

L
M

L

EI





           





 

 

And so: 
3

B B

EI
M

L
   

 

Thus the rotational stiffness for a pinned-pinned beam is: 

 

 
3EI

K
L   
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2.4 Distributing the Balancing Moment 

Distribution Factor 

Returning to the original superposition in which the balancing moment is used, we 

now find how the balancing moment is split. We are considering a general case in 

which the lengths and stiffnesses may be different in adjacent spans: 

 

 

 

So from this diagram we can see that the rotation at joint B, B , is the same for both 

spans. We also note that the balancing moment is split up; BAM  of it causes span AB 

to rotate  B  whilst the remainder, BCM , causes span BC to rotate  B  also: 
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If we now split the beam at joint B we must still have B  rotation at joint B for 

compatibility of displacement in the original beam: 

 

 

 

Thus: 

 

 

   and 

and 

BA B
B BAB BC

AB BC

C

BA AB B BC BC

M M

K K

M K M K

 

B 

 

   
 

 

But since from the original superposition, Bal BA BCM M M  , we have: 

 

 

 

Bal BA BC

BA B BC B

BA BC

M M M

K K

K K B

 



 

 

 

 

 

And so: 
 

Bal
B

BA BC

M

K K
 


 

 

Thus, substituting this expression for B  back into the two equations: 

 

 AB
BA AB B B

AB BC

K
alM K M

K K


 
    

 



Structural Analysis III 

Dr. C. Caprani 21

 BC
BC BC B B

AB BC

K
alM K M

K K


 
    

 

 

The terms in brackets are called the distribution factors (DFs) for a member. Examine 

these expressions closely: 

 The DFs dictate the amount of the balancing moment to be distributed to each 

span (hence the name); 

 The DFs are properties of the spans solely, K EI L ; 

 The DF for a span is its relative stiffness at the joint. 

 

This derivation works for any number of members meeting at a joint. So, in general, 

the distribution factor for a member at a joint is the member stiffness divided by the 

sum of the stiffnesses of the members meeting at that joint: 

 

 BA
BA

K
DF

K



 

 

A useful check on your calculations thus far is that since a distribution factor for each 

member at a joint is calculated, the sum of the DFs for the joint must add to unity: 

 

 
Joint X

DFs 1  

 

If they don’t a mistake has been made since not all of the balancing moment will be 

distributed and moments can’t just vanish! 
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Relative Stiffness 

Lastly, notice that the distribution factor only requires relative stiffnesses (i.e. the 

stiffnesses are divided). Therefore, in moment distribution, we conventionally take 

the stiffnesses as: 

1. member with continuity at both ends: 

 

EI
k

L
   

 

2. member with no continuity at one end: 

 

3 3
'

4 4

EI
k k

L
   

 

In which the k’ means a modified stiffness to account for the pinned end (for 

example). 

 

Note that the above follows simply from the fact that the absolute stiffness is 4EI L  

for a beam with continuity at both ends and the absolute stiffness for a beam without 

such continuity is 3EI L . This is obviously 3/4 of the continuity absolute stiffness. 
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2.5 Moment Distribution Iterations 

In the preceding development we only analysed the effects of a balancing moment on 

one joint at a time.  The structures we wish to analyse may have many joints. Thus: if 

we have many joints and yet can only analyse one at a time, what do we do?  

 

To solve this, we introduce the idea of ‘locking’ a joint, which is just applying a fixed 

support to it to restrain rotation. With this in mind, the procedure is: 

 

1. Lock all joints and determine the fixed-end moments that result; 

2. Release the lock on a joint and apply the balancing moment to that joint; 

3. Distribute the balancing moment and carry over moments to the (still-locked) 

adjacent joints; 

4. Re-lock the joint; 

5. Considering the next joint, repeat steps 2 to 4; 

6. Repeat until the balancing and carry over moments are only a few percent of 

the original moments. 

 

The reason this is an iterative procedure is (as we will see) that carrying over to a 

previously balanced joint unbalances it again. This can go on ad infinitum and so we 

stop when the moments being balanced are sufficiently small (about 1 or 2% of the 

start moments). Also note that some simple structures do not require iterations. Thus 

we have the following rule: 

 

For structures requiring distribution iterations, always finish on a distribution, never 

on a carry over 

 

This leaves all joints balanced (i.e. no unbalancing carry-over moment) at the end. 
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3. Beam Examples 

3.1 Example 1: Introductory Example 

This example is not the usual form of moment distribution but illustrates the process 

of solution.  

 

Problem 

Consider the following prismatic beam: 

 

 

Solution 

To solve this, we will initially make it ‘worse’. We clamp the support at B to prevent 

rotation. In this case, span AB is a fixed-fixed beam which has moment reactions: 

 

 50 kNm 50 kNm
8 8AB BA

PL PL
FEM FEM         

 

Notice that we take anticlockwise moments to be negative. 
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The effect of clamping joint B has introduced a moment of 50 kNm  at joint B. To 

balance this moment, we will apply a moment of 50 kNm  at joint B. Thus we are 

using the principle of superposition to get back our original structure. 

 

We know the bending moment diagram for the fixed-fixed beam readily. From our 

previous discussion we find the bending moments for the balancing 50 k int 

B as follows: 

Nm at jo

 

Since EI is constant, take it to be 1; then the stiffnesses are: 

 

 
1 1

0.25 0.25
4 4BA BC

AB BC

EI EI
k k

L L
           
   

 

 

At joint B we have: 

 

 
1 1

0.5
4 4

k     

 

Thus the distribution factors are: 

 

 
0.25 0.25

0.5 0.5
0.5 0.5

BA BC
BA BC

k k
DF DF

k k
     
 

 

 

Thus the ‘amount’ of the  applied at joint B give to each span is: 50 kNm

 

  
0.5 50 25 kNm

0.5 50 25 kNm
BA BA Bal

BC BC Bal

M DF M

M DF M

     
      

 

We also know that there will be carry-over moments to the far ends of both spans: 
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1
25 12.5 kNm

2
1

25 12.5 kNm
2

AB BA

CB BC

M COF M

M COF M

      

      
 

 

All of this can be easily seen in the bending moment diagram for the applied moment 

and the final result follows from superposition: 

 

 

 

 

These calculations are usually expressed in a much quicker tabular form as: 

 

Joint A B C  

Member AB BA BC CB  

DF 1 0.5 0.5 1  

FEM +50 -50    

Dist.  +25 +25  Note 1

C.O. +12.5  +12.5 Note 2

Final +62.5 -25 +25 +12.5 Note 3
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Note 1: 

The -50 kNm is to be balanced by +50 kNm which is distributed as +25 kNm and 

+25 kNm. 

 

Note 2: 

Both of the +25 kNm moments are distributed to the far ends of the members using 

the carry over factor of 1
2 . 

 

Note 3: 

The moments for each joint are found by summing the values vertically. 

 

 

And with more detail, the final BMD is: 

 

 

 

Once the bending moment diagram has been found, the reactions and shears etc can 

be found by statics. 
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3.2 Example 2: Iterative Example 

For the following beam, we will solve it using the ordinary moment distribution 

method and then explain each step on the basis of locking and unlocking joints 

mentioned previously. 

 

All members have equal EI. 

 

 

 

Ordinary Moment Distribution Analysis 

1. The stiffness of each span is: 

 AB: ' 3 3 1

4 4 8

3
BA

AB

EI
k

L
     
   32

 


 

 BC: 
1

10BCk   

 CD: 
1

6CDk   

 

2. The distribution factors at each joint are: 

 Joint B: 

 
3 1

0.1937
32 10

k     
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3 32
0.48

0.1937
1

0.1
0.52

0.1937

BA
BA

BC
BC

k
DF

k
DFs

k
DF

k

   
 
  


 


 

 

 Joint C: 

 
1 1

0.2666
10 6

k     

 

0.1
0.375

0.2666
1

0.1666
0.625

0.2666

CB
CB

CD
CD

k
DF

k
DFs

k
DF

k

   
 
  


 


 

 

3. The fixed end moments for each span are: 

 

 Span AB: 

 

 

 

 
3 3 100 8

150 kNm
16 16BA

PL
FEM

  
      

  

Note that we consider this as a pinned-fixed beam. Example 3 explains why we 

do not need to consider this as a fixed-fixed beam. 
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 Span BC: 

 

 

 

To find the fixed-end moments for this case we need to calculate the FEMs for 

each load separately and then use superposition to get the final result: 

 

 

 

 
 

 

2 2

2 2

2 2

2 2

50 3 7
1 7

10

50 3 7
1 31.5 kNm

10

BC

CB

Pab
FEM

L

Pa b
FEM

3.5 kNm

L

 
     

 
     

 

 

 

 

 
 

 

2 2

2 2

2 2

2 2

50 7 3
2 31.5 kNm

10

50 7 3
2 7

10

BC

CB

Pab
FEM

L

Pa b
FEM 3.5 kNm

L

 
     

 
     
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The final FEMs are: 

 

 

     

     

1 1

73.5 31.5 105 kNm

2 1 2

31.5 73.5 105 kNm

BC BC BC

CB CB CB

FEM FEM FEM

FEM FEM FEM

 

    

 

2

    

 

 

 which is symmetrical as expected from the beam. 

 

 Span CD: 

 

 

 

 

2 2

2 2

20 6
60 kNm

12 12

20 6
60 kNm

12 12

CD

DC

wL
FEM

wL
FEM


     


     
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4. Moment Distribution Table: 

 

Joint A B C D  

Member AB BA BC CB CD CB  

DF 0 0.48 0.52 0.375 0.625 1  

FEM  -150 +105 -105 +60 -60 Step 1

Dist.  +21.6 +23.4 +16.9 +28.1  Step 2

C.O.  +8.5 +11.7  +14.1  

Dist.  -4.1 -4.4 -4.4 -7.3  Step 3

C.O.  -2.2 -2.2  -3.7  

Dist.  +1.1 +1.1 +0.8 +1.4  Step 4

Final 0 -131.4 +131.4 -82.2 +82.2 -49.6 Step 5

      

 

The moments at the ends of each span are thus (noting the signs give the direction): 
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Explanation of Moment Distribution Process 

Step 1 

For our problem, the first thing we did was lock all of the joints: 

 

 

 

We then established the bending moments corresponding to this locked case – these 

are just the fixed-end moments calculated previously: 

 

 

 

The steps or discontinuities in the bending moments at the joints need to be removed.  

 

Step 2 - Joint B 

Taking joint B first, the joint is out of balance by 150 105 45 kNm    . We can 

balance this by releasing the lock and applying +45 kNm at joint B: 
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The bending moments are got as: 

 

  
0.48 45 21.6 kNm

0.52 45 23.4 kNm
BA

BC

M

M

   
   

 

Also, there is a carry-over to joint C (of 1 2 23.4 11.4 kNm  ) since it is locked but 

no carry-over to joint A since it is a pin. 

 

At this point we again lock joint B in its new equilibrium position. 

 

Step 2 - Joint C 

Looking again at the beam when all joints are locked, at joint C we have an out of 

balance moment of . We unlock this by applying a balancing 

moment of +45 kNm applied at joint C giving: 

105 60 45 kNm   

 

  
0.375 45 28.1 kNm

0.625 45 16.9 kNm
BA

BC

M

M

   
   
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And carry-overs of 28.1  and 16.90.5 14.1  0.5 8.5   (note that we’re rounding to 

the first decimal place). The diagram for these calculations is: 

 

 

 

Step 3 – Joint B 

Looking back at Step 2, when we balanced joint C (and had all other joints locked) 

we got a carry over moment of +8.5 kNm to joint B. Therefore joint B is now out of 

balance again, and must be balanced by releasing it and applying -8.5 kNm to it: 

 

 

 

In which the figures are calculated in exactly the same way as before. 
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Step 3 – Joint C 

Again, looking back at Step 2, when we balanced joint B (and had all other joints 

locked) we got a carry over moment of +11.7 kNm to joint C. Therefore joint C is out 

of balance again, and must be balanced by releasing it and applying -11.7 kNm to it: 

 

 

 

Step 4 – Joint B 

In Step 3 when we balanced joint C we found another carry-over of -2.2 kNm to joint 

B and so it must be balanced again: 

 

 

 

Step 4 – Joint C 

Similarly, in Step 3 when we balanced joint B we found a carry-over of -2.2 kNm to 

joint C and so it must be balanced again: 
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Step 5 

At this point notice that: 

1. The values of the moments being carried-over are decreasing rapidly; 

2. The carry-overs of Step 4 are very small in comparison to the initial fixed-end 

moments and so we will ignore them and not allow joints B and C to go out of 

balance again; 

3. We are converging on a final bending moment diagram which is obtained by 

adding all the of the bending moment diagrams from each step of the 

locking/unlocking process; 

4. This final bending moment diagram is obtained by summing the steps of the 

distribution diagrammatically, or, by summing each column in the table 

vertically: 
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Calculating the Final Solution 

The moment distribution process gives the following results: 

 

 

 

To this set of moments we add all of the other forces that act on each span: 

 

 

 

Note that at joints B and C we have separate shears for each span. 

 

Span AB: 

M about 0 131.4 100 4 8 0 33.6 kN

0 33.6 100 0 66.4 kN

A A

y BL BL

B V V

F V V

        

      


 

V 



 

 

If we consider a free body diagram from A to mid-span we get: 

4 33.6 134.4 kNmMaxM     

 

Span BC: 

M about 0 50 3 50 7 82.2 131.4 10 0 45.1 kN

0 45.1 50 50 0 54.9 kN

CL CL

y BR BR

B V

F V V

          

       


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Drawing free-body diagrams for the points under the loads, we have: 

 

 

 

54.9 3 131.4 33.3 kNmFM      

 

 

45.1 3 82.2 53.1 kNmGM      

 

 

Span CD: 
26

M about 0 20 49.6 82.2 6 0 54.6 kN
2

0 54.6 20 6 0 65.4 kN

D D

y CR CR

C V V

F V V

         

       


 

 

 

The maximum moment occurs at 
65.4

3.27 m
20

  from C. Therefore, we have: 

 

      
2

M about 0

3.27
82.2 20 65.4 3.27 0

2
24.7 kNm

Max

Max

X

M

M



      

 


 

 

 

The total reactions at supports B and C are given by: 

 

  
66.4 54.9 121.3 kN

45.1 65.4 110.5 kN
B BL BR

C CL CR

V V V

V V V

    
    
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Thus the solution to the problem is summarized as: 
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3.3 Example 3: Pinned End Example 

In this example, we consider pinned ends and show that we can use the fixed-end 

moments from either a propped cantilever or a fixed-fixed beam.  

 

We can also compare it to Example 1 and observe the difference in bending moments 

that a pinned-end can make. 

 

We will analyse the following beam in two ways: 

 Initially locking all joints, including support A; 

 Initially locking joints except the pinned support at A. 

We will show that the solution is not affected by leaving pinned ends unlocked. 

 

 

 

For each case it is only the FEMs that are changed; the stiffness and distribution 

factors are not affected. Hence we calculate these for both cases. 

 

1. Stiffnesses: 

 AB: ' 3 3 1

4 4 4

3
BA

AB

EI
k

L
     
    16

   

 BC: 
1

4BCk   
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2. Distribution Factors: 

 Joint B: 

 
3 1 7

16 4 16
k     

 

3 16 3
0.43

7 16 7
1

4 16 4
0.57

7 16 7

BA
BA

BC
BC

k
DF

k
DFs

k
DF

k

    
 
   


 


 

 

Solution 1: Span AB is Fixed-Fixed 

The fixed end moments are: 

 

 

 

 

100 4
50 kNm

8 8
100 4

50 kNm
8 8

AB

BA

PL
FEM

PL
FEM

 
    

 
    

 

 

The distribution table is now ready to be calculated. Note that we must release the 

fixity at joint A to allow it return to its original pinned configuration. We do this by 

applying a balancing moment to cancel the fixed-end moment at the joint. 
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Joint A B C  

Member AB BA BC CB  

DF 0 0.43 0.57 1  

FEM +50.0 -50.0    

Pinned End -50.0   Note 1

C.O.  -25.0   Note 2

Dist.  +32.3 +42.7  Note 3

C.O.   +21.4 Note 4

Final 0 -42.7 +42.7 +21.4 Note 5

 

Note 1: 

The +50 kNm at joint A is balanced by -50 kNm. This is necessary since we should 

end up with zero moment at A since it is a pinned support. Note that joint B remains 

locked while we do this – that is, we do not balance joint B yet for clarity. 

 

Note 2: 

The -50 kNm balancing moment at A carries over to the far end of member AB using 

the carry over factor of 1
2 . 

 

Note 3: 

Joint B is now out of balance by the original -50 kNm as well as the carried-over -25 

kNm moment from A making a total of -75 kNm. This must be balanced by +75 kNm 

which is distributed as: 

 

  
0.43 75 32.3 kNm

0.57 75 42.7 kNm
BA BA Bal

BC BC Bal

M DF M

M DF M

      

      
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Note 4: 

We have a carry over moment from B to C since C is a fixed end. There is no carry 

over moment to A since A is a pinned support. 

 

Note 5: 

The moments for each joint are found by summing the values vertically. 

 

We now consider the alternative method in which we leave joint A pinned 

throughout. 

 

Solution 2: Span AB is Pinned-Fixed 

In this case the fixed-end moments are: 

 

 

 

 
3 3 100 4

75 kNm
16 16BA

PL
FEM

  
      

 

The distribution table can now be calculated. Note that in this case there is no fixed-

end moment at A and so it does not need to be balanced. This should lead to a shorter 

table as a result. 
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Joint A B C  

Member AB BA BC CB  

DF 0 0.43 0.57 1  

FEM  -75.0    

Dist.  +32.3 +42.7  Note 1

C.O.   +21.4 Note 2

Final 0 -42.7 +42.7 +21.4 Note 3

 

Note 1: 

Joint B is out of balance by -75 kNm. This must be balanced by +75 kNm which is 

distributed as: 

 

  
0.43 75 32.3 kNm

0.57 75 42.7 kNm
BA BA Bal

BC BC Bal

M DF M

M DF M

     
      

 

Note 2: 

We have a carry over moment from B to C since C is a fixed end. There is no carry 

over moment to A since A is a pinned support. 

 

Note 3: 

The moments for each joint are found by summing the values vertically. 

 

Conclusion 

Both approaches give the same final moments. Pinned ends can be considered as 

fixed-fixed which requires the pinned end to be balanced or as pinned-fixed which 

does not require the joint to be balanced. It usually depends on whether the fixed end 

moments are available for the loading type as to which method we use. 
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Final Solution 

Determine the bending moment diagram, shear force diagram, reactions and draw the 

deflected shape for the beam as analysed. 
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3.4 Example 4: Cantilever Example 

Explanation 

In this example we consider a beam that has a cantilever at one end. Given any 

structure with a cantilever, such as the following beam: 

 

 

 

we know that the final moment at the end of the cantilever must support the load on 

the cantilever by statics. So for the sample beam above we must end up with a 

moment of PL at joint C after the full moment distribution analysis. Any other value 

of moment violates equilibrium. 

 

Since we know in advance the final moment at the end of the cantilever, we do not 

distribute load or moments into a cantilever. Therefore a cantilever has a distribution 

factor of zero: 

 

 Cantilever 0DF   

 

We implement this by considering cantilevers to have zero stiffness, . Lastly, 

we consider the cantilever moment as a fixed end moment applied to the joint and 

then balance the joint as normal. Note also that the adjacent span (e.g. BC above) 

does not therefore have continuity and must take the modified stiffness, 

0k 

3
4 k . 
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Problem Beam 

Analyse the following prismatic beam using moment distribution: 

 

 

Solution 

We proceed as before: 

 

1. Stiffnesses: 

 AB: 0BAk   since the DF for a cantilever must end up as zero. 

 

 BD: End B of member BD does not have continuity since joint B is free 

to rotate – the cantilever offers no restraint to rotation. Hence we 

must use the modified stiffness for member BD: 

 

 

' 3 3 1

4 4 4BD
BD

EI
k

L
    3

16
     

   
 

 

 

 

 DF: ' 3 3 1

4 4 8

3
DF

DF

EI
k

L
     
    32

   
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2. Distribution Factors: 

 Joint B: 

 
3 3

0
16 16

k     

 

0
0

3 16
1

3 16
1

3 16

BA
BA

BD
BD

k
DF

k
DFs

k
DF

k

   
 
  


 


 

 

Notice that this will always be the case for a cantilever: the DF for the 

cantilever itself will be zero and for the connecting span it will be 1. 

 

 Joint D: 

 
3 3 9

16 32 32
k     

 

6 32 2

9 32 3
1

3 32 1

9 32 3

DB
DB

DF
DF

k
DF

k
DFs

k
DF

k

   
 
  


 


 

 

3. Fixed-End Moments: 

As is usual, we consider each joint to be fixed against rotation and then 

examine each span in turn: 
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 Cantilever span AB: 

 

 

  30 2 60 kNmBAFEM PL        

  

 Span BD: 

 

 

 

100 4
50 kNm

8 8
100 4

50 kNm
8 8

BD

DB

PL
FEM

PL
FEM

 
    

 
    

 

 

 Span DF: 

 

 

 
3 3 60 8

90 kNm
16 16DF

PL
FEM

  
      
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4. Moment Distribution Table: 

Joint A B D F  

 

Member  BA D DB F FD AB B D  

DF 0 0 1 0  .67 0.33 1  

FEM -60. 0.0 -  0 0 +5 50.0 +90.0 0  

Dist.  +10.0 -26.7 -13.3  Note 1

C.O.   +5   Note 2

Dist.   - .7 3.3 -1  Note 3

Final 0 -60 60 0 + -75 +75  

  te te  No  4 No  4  

 

ote 1: 

s out of balance by

N

Joint B i     60 50 10 kNm      which is balanced by +10 

 

imilarly, joint C is out of balance by 

kNm, distributed as: 

 

 
0 10 0 kNm

1 10 10 kNm
BA BA Bal

BD BD Bal

M DF M

M DF M

     
      

 

S    50 90 40 kNm      which is balanced 

 

by -40 kNm, distributed as: 

 

 
0.67 40 26.7 kNm

0.33 40 13.3 kNm
DB DB Bal

DF DF Bal

M DF M

M DF M

     
      
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Note 2: 

no carry-over from joint D to joint B since joint B is similar to a pinned 

ote 3: 

Nm is balanced as usual. 

ote 4: 

ents at each joint sum to zero; that is, the joints are balanced. 

he moment distribution table gives the moments at the ends of each span, (noting 

There is 

support because of the cantilever: we know that the final moment there needs to be 60 

kNm and so we don’t distribute or carry over further moments to it. 

 

N

The +5 k

 

N

The mom

 

T

the signs give the direction, as: 

 

 

 

ith these joint moments and statics, the final BMD, SFD, reactions and deflected 

xercise 

 following solution. 

W

shape diagram can be drawn. 

 

E

Verify the
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Final Solution 
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3.5 Example 5: Support Settlement 

Problem 

For the following beam, if support B settles by 12 mm, determine the load effects that 

result. Take 2200 kN/mmE   and 6 4200 10  mmI   . 

 

 

Solution 

As with all moment distribution, we initially consider joint B locked against rotation, 

but the support settlement can still occur: 

 

 

 

Following the normal steps, we have: 

 

1. Stiffnesses: 

 AB: 
1

6BA
AB

EI
k

L
   
 

  

 BC: ' 3 3 4 3 1

4
 


 
4 4 4BC

BC

EI
k

L
     
  
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2. Distribution Factors: 

 Joint B: 

 
1 1 10

6 4 24
k     

 

4 24 2

10 24 5
1

6 24 3

10 24 5

BA
BA

BC
BC

k
DF

k
DFs

k
DF

k

   
 
  


 


 

 

3. Fixed-End Moments: 

 Span AB: 

 

 

 

   
 


2

6 3

23

6

6 200 200 10 12 10

6 10

80 kNm

AB BAFEM FEM

EI

L







 




 

 

 

Note that the units are kept in terms of kN and m. 
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 Span BC: 

 

 

 
  

 


2

6 3

23

3

4
3 200 200 10 12 10

3
4 10

120 kNm

AB

EI
FEM

L




 

  
 



 

 

 

Note that the 
4

3
EI  stiffness of member BC is important here. 

 

4. Moment Distribution Table: 

 

Joint A B C  

Member AB BA BC CB  

DF 1 0.4 0.6 0  

FEM +80.0 +80.0 -120.0   

Dist.  +16.0 +24.0   

C.O. +8.0  0  

Final +88.0 +96.0 -96.0 0  

 

The moment distribution table gives the moments at the ends of each span, (noting 

the signs give the direction, as: 
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Span AB: 

M about 0 88 96 6 0 30.7 kN i.e.

0 0 30.7 kN

BA BA

y BA A A

A V V

F V V V

       

       










 

 

Span BC: 

M about 0 96 4 0 24.0 kN

0 0 24.0 kN i.e. 

C C

y BC C BC

B V V

F V V V

      

      




 

 

30.7 24 54.7 kN B BA BCV V V      

 

Hence the final solution is as follows.  

 

Note the following: 

 unusually we have tension on the underside of the beam at the support 

location that has settled; 

 the force required to cause the 12 mm settlement is the 54.7 kN support 

‘reaction’; 

 the small differential settlement of 12 mm has caused significant load 

effects in the structure. 
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Final Solution 
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3.6 Problems 

Using moment distribution, determine the bending moment diagram, shear force 

diagram, reactions and deflected shape diagram for the following beams. Consider 

them prismatic unless EI values are given. The solutions are given with tension on 

top as positive. 

 

1.  

 

A:24.3 

B: 41.4 

C: 54.3 

(kNm) 

2.  

 

A: 15.6 

B: 58.8 

C: 0 

(kNm) 

3.  

 

A: 20.0 

B: 50.0 

(kNm) 

4.  

 

A: 72.9 

B: 32.0 

C: 0 

(kNm) 

Dr. C. Caprani 59



Structural Analysis III 

5.  

 

A: 22.8 

B: 74.4 

C: 86.9 

D: 54.1 

6.  

 

A: 0 

B: 43.5 

C: 58.2 

(kNm) 

7.   Using any relevant results from Q6, analyse the following beam: 

 

A: 0 

B: 50.6 

C: 33.7 

D: 0 

(kNm) 

8.  

 

A: 28.3 

B: 3.3 

C: 100.0 

(kNm) 

9.  

 

A: 0 

B: 66.0 

C: 22.9 

D: 10.5 

(kNm) 
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10.  

 

A: 0 

B: 69.2 

C: 118.6 

D: 0 

(kNm) 

11.  

 

A: -2.5 

B: 5.8 

C: 62.5 

D: 0 

(kNm) 

12.  

 

A: 85.0 

B: 70.0 

C: 70.0 

D: 0 

(kNm) 

13.  

 

A: 0 

B: 31.7 

C: 248.3 

D: 0 

(kNm) 

14.  

 

Support C also settles by 15 mm. Use 40 MNmEI  . 

A: 0 

B: 240.0 

C: -39.6 

D: 226.1

(kNm) 
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4. Non-Sway Frames 

4.1 Introduction 

Moment distribution applies just as readily to frames as it does to beams. In fact its 

main reason for development was for the analysis of frames. The application of 

moment distribution to frames depends on the type of frame: 

 

 Braced or non-sway frame: 

Moment distribution applies readily, with no need for additional steps; 

 

 Unbraced or sway frame: 

Moment distribution applies, but a two-stage analysis is required to account for 

the additional moments caused by the sway of the frame. 

 

The different types of frame are briefly described. 
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Braced or Non-Sway Frame 

This is the most typical form of frame found in practice since sway can cause large 

moments in structures. Any frame that has lateral load resisted by other structure is 

considered braced. Some examples are: 

 

 

Typical RC Braced Frame 

 

 

Typical Steel Braced Frame 
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In our more usual structural model diagrams: 
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Unbraced or Sway Frame 

When a framed structure is not restrained against lateral movement by another 

structure, it is a sway frame. The lateral movements that result induce additional 

moments into the frame. For example: 
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4.2 Example 6: Simple Frame 

Problem 

Analyse the following prismatic frame for the bending moment diagram: 

 

 

Solution 

We proceed as usual: 

 

1. Stiffnesses: 

 AB: 
1

4BA
AB

EI
k

L
   
 

  

 BC: 
1

4BD
BD

EI
k

L
   
 

 

 

2. Distribution Factors: 

 Joint B: 

 
1 1 2

4 4 4
k     

Dr. C. Caprani 66



Structural Analysis III 

 

1 4
0.5

2 4
1

1 4
0.5

2 4

BA
BA

BD
BD

k
DF

k
DFs

k
DF

k

   
 
  


 


 

 

3. Fixed-End Moments: 

 Span BD: 

 

 

 

 

100 4
50 kNm

8 8
100 4

50 kNm
8 8

BD

DB

PL
FEM

PL
FEM

 
    

 
    

 

 

4. Moment Distribution Table: 

 

Joint A B D

Member AB BA BD DB

DF 0 0.5 0.5 1

FEM 0 0 +50.0 -50.0

Dist.  -25.0 -25.0 

C.O. -12.5  -12.5

Final -12.5 -25 +25 -62.5
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Interpreting the table gives the following moments at the member ends: 

 

 

 

 

5. Calculate End Shears and Forces 

 

When dealing with frames we are particularly careful with: 

 drawing the diagrams with all possible forces acting on the member; 

 assuming directions for the forces; 

 interpreting the signs of the answers as to the actual direction of the 

forces/moments. 

 

Remember that in frames, as distinct from beams, we have the possibility of axial 

forces acting. We cannot ignore these, as we will see. 

 

So for the present frame, we split up the members and draw all possible end 

forces/moments on each member. 
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Member AB: 

 

M about 0

4 12.5 25 0 13.1 kN 

0

0 13.1 kN 

0

0

BA BA

x

A BA A

y

A BA A BA

A

V V

F

H V H

F

V F V F



      





     





    







 

 

Notice that we cannot yet solve for the axial 

force in the member. It will require 

consideration of joint B itself. 

 

Member BD: 

 

 

M about 0 25 62.5 100 2 4 0 59.4 kN 

0 100 0 40.6 kN

0 0

D D

y D BD BD

x D BD D BD

B V V

F V V V

F H F H F

         

       

     









  

 

Notice again we cannot solve for the axial force yet. 
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To find the moment at C in member BD we draw a free-body diagram: 

 

 

M about 0

62.5 59.4 2 0

56.3 kNm
C

C

B

M

M



    

  


 

 

 

 

To help find the axial forces in the members, we will consider the equilibrium of joint 

B itself. However, since there are many forces and moments acting, we will consider 

each direction/sense in turn: 

 

 Vertical equilibrium of joint B: 

 

The 40.6 kN is the shear on member BD. 

 

0

40.6 0

40.6 kN

y

BA

BA

F

F

F



  
  


 

 

The positive sign indicates it acts in the 

direction shown upon the member and the 

joint. 

 

 

 

 

 

Dr. C. Caprani 70



Structural Analysis III 

 Horizontal equilibrium of joint B: 

 

0

13.1 0

13.1 kN

x

BD

BD

F

F

F



  
  


 

 

The positive sign indicates it acts 

in the direction shown upon the 

member and the joint. 

 

Lastly, we will consider the moment equilibrium of the joint for completeness. 

 

 Moment equilibrium of joint B: 

 

 

As can be seen clearly the joint is 

in moment equilibrium. 

 

Assembling all of these calculations, we can draw the final solution for this problem. 
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Final Solution 

          

 

    

 

In the axial force diagram we have used the standard truss sign convention: 
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4.3 Example 7:  Frame with Pinned Support 

Problem 

Analyse the following frame: 

 

Solution 

1. Stiffnesses: 

 AB: 
1

4BA
AB

EI
k

L
   
 

  

 BC: 
1

4BC
BC

EI
k

L
   
 

 

 BD: ' 3 3 4 3 1

4 4
  

4 4BD
BD

EI
k

L
    
 

 

2. Distribution Factors: 

 Joint B: 

 
1 1 1 3

4 4 4 4
k      
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1 4
0.33

3 4

1 4
0.33 1

3 4

1 4
0.33

3 4

BA
BA

BC
BC

BD
BD

k
DF

k

k
DF DFs

k

k
DF

k


   


   



   







 

 

3. Fixed-End Moments: 

 Span AB: 

 

 

80 4
40 kNm

8 8
80 4

40 kNm
8 8

AB

BA

PL
FEM

PL
FEM

 
    

 
    

 

 

4. Moment Distribution Table: 

 

Joint A  B C D

Member AB  BA BD BC CB DB

DF 0  0.33 0.33 0.33 1 0

FEM +40.0  -40.0    

Dist.   +13.3 +13.3 +13.3  

C.O. +6.7    +6.7 

Final +46.7  -26.7 +13.3 +13.3 +6.7 0
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The results of the moment distribution are summed up in the following diagram, in 

which the signs of the moments give us their directions: 

 

 

 

Using the above diagram and filling in the known and unknown forces acting on each 

member, we can calculate the forces and shears one ach member. 
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5. Calculate End Shears and Forces 

Span AB: 

M about 0

46.7 80 2 26.7 4 0

35.0 kN 

0

80 0

45.0 kN

B

B

y

B A

A

A

V

V

F

V V

V



     

   



   

   




 

 

Span BC: 

 

M about 0

4 6.7 13.3

5.0 kN 

0

0

5.0 kN

C

C

x

C BC

BC

B

H

H

F

H H

H



0   

   



  
   




 

 

Span BD: 

 

M about 0

4 13.3 0

3.3 kN 

0

0

3.3 kN

D

D

x

D BD

BD

B

H

H

F

H H

H



  
   



  
   




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To help find the axial forces in the members, consider first the vertical equilibrium of 

joint B: 

 

 

 As can be seen, the upwards end shear of 35 

int B must be vertically supported 

to ground, all of the 

 

ext consider the horizontal equilibrium of joint B: 

kN in member AB acts downwards upon 

joint B.  

 In turn, jo

by the other members. 

 Since all loads must go 

35 kN is taken in compression by member 

BD as shown. 

N

 

 The two ends shears of 5 kN 

(member BC) and 3.3 kN (member 

BD), in turn act upon the joint.  

 Since joint B must be in horizontal 

equilibrium, there must be an extra 

force of 1.7 kN acting on the joint 

as shown. 

 This 1.7 kN force, in turn, acts 

upon member AB as shown, 

resulting in the horizontal reaction 

at joint A of 1.7 kN. 
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Lastly, for completeness, we consider the m

 

oment equilibrium of joint B: 

 

 

As can be seen, the member end 

moments act upon the joint in the 

opposite direction. 

Looking at the joint itself it is clearly in 

equilibrium since: 

 26.7 13.3 13.3 0    

(allowing for the rounding that has 

occurred). 
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Final Solution 

At this point the final BMD, SFD, reactions and DSD can be drawn: 
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4.4 Example 8: Frame with Cantilever 

Problem 

Analyse the following prismatic frame for all load effects: 

 

 

Solution 

1. Stiffnesses: 

 AB: 
1

8BA
AB

EI
k

L
   
 

  

 BC: Member BC has no stiffness since it is a cantilever; 

 BD: 
1

8BD
BD

EI
k

L
   
 

 

 BE: ' 3 3 1 1

8
   

4 4 6BE
BE

EI
k

L
   
 
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2. Distribution Factors: 

 Joint B: 

 
1 1 1 3

8 8 8 8
k      

 

1 8
0.33

3 8

1 8
0.33 1

3 8

1 8
0.33

3 8

BA
BA

BD
BD

BE
BE

k
DF

k

k
DF DFs

k

k
DF

k


   


   



   







  

 

3. Fixed-End Moments: 

 Span BC: 

 

300 1

300 kNm
BCFEM PL    

 
 

 

4. Moment Distribution Table: 

 

Joint A B D E

Member AB BA BC BE BD DB EB

DF 0 0.33 0 0.33 0.33 0 0

FEM   +300.0    

Dist.  -100.0  -100.0 -100.0  

C.O. -50.0     -50.0 

Final -50.0 -100.0 +300.0 -100.0 -100.0 -50.0 0
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Using the signs, the results of the moment distribution are summed up in the 

following diagram: 

 

 

 

Looking at joint B, we see that it is in moment equilibrium as expected: 
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Final Solution 

 

 

Exercise: 

Using a similar approach to the previous examples, find the reactions and shear force 

diagram. 

 

Ans.:  

50.0 kNm 18.75 kN 2.05 kNA A AM V H       

50.0 kNm 0 kN 18.75 kNC C CM V H      

318.75 kN 16.7 kND DV H    
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4.5 Problems 

Using moment distribution, determine the bending moment diagram, shear force 

diagram, reactions and deflected shape diagram for the following non-sway frames. 

Consider them prismatic unless EI values are given. The reactions and pertinent 

results of the moment distribution are given.  

 

1.  

 

137 kN

13 kN

48 kNm

0 kN

48 kN

337 kN

35 kN

52 kNm

96 kNm

148 kNm

A

A

C

C

C

D

D

BA

BC

BD

V

H

M

V

H

V

H

M

M

M

 
 


 

 
 





 

2.  

 

200.5 kN

120.7 kN

113.3 kNm

23.3 kNm

47.5 kN

216.7 kN

73.3 kNm

A

A

A

C

C

C

B

V

H

M

M

V

H

M

 
 

 

 
 


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3.  

 

34.9 kN

8.3 kN

16.6 kNm

33.6 kNm

54.6 kN

6.8 kN

110.6 kN

1.5 kN

33.3 kNm

64.1 kNm

55.2 kNm

8.9 kNm

A

A

A

D

D

D

E

E

B

CB

CD

CE

V

H

M

M

V

H

V

H

M

M

M

M

 
 
 
 

 
 

 
 






 

The following problems are relevant to previous exam questions, the year of which is 

given. The solutions to these problems are required as the first step in the solutions to 

the exam questions. We shall see why this is so when we study sway frames. 

 

4.  Summer 1998 

 

 

50.0 kN

20.0 kN

20.0 kN

0 kNm

30.0 kN

0 kN

120.0 kNm

A

A

C

D

D

D

B

V

H

H

M

V

H

M

 
 
 


 



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5.  Summer 2000 

 

 

30.0 kN

8.9 kN

226.7 kN

30.0 kN

35.6 kN

26.7 kNm

93.3 kNm

106.7 kNm

A

A

C

D

D

B

CB

CD

V

H

H

V

H

M

M

M

 
 
 

 
 





 

6.  Summer 2001 

 

 

2.5 kNm

98.33 kN

6.9 kN

61.7 kN

33.1 kN

55 kNm

A

A

A

C

C

B

M

V

H

V

H

M

 

 
 

 
 


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7.  Summer 2005 

 

 

2.7 kN

58.0 kN

18.3 kN

24.0 kNm

121.0 kN

18.0 kN

32.0 kNm

48.0 kNm

52.0 kNm

A

A

E

F

F

F

BC

CF

CB

V

H

V

M

V

H

M

M

M

 
 

 
 

 
 





8.  Summer 2006 

 

 

40.3 kN

6.0 kN

16.0 kNm

0 kN

16.0 kN

66.0 kN

10.0 kN

24.0 kNm

56.0 kNm

32.0 kNm

A

A

C

C

C

D

D

BA

BD

BD

V

H

M

V

H

V

H

M

M

M

 
 
 

 

 
 




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5. Sway Frames 

5.1 Basis of Solution 

Overall 

Previously, in the description of sway and non-sway frames, we identified that there 

are two sources of moments: 

 Those due to the loads on the members, for example: 

 

 

 

 Those due solely to sway, for example: 

 

 

 

So if we consider any sway frame, such as the following, we can expect to have the 

above two sources of moments in the frame. 
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This leads to the use of the Principle of Superposition to solve sway frames: 

1. The sway frame is propped to prevent sway; 

2. The propping force, P , is calculated – Stage I analysis; 

3. The propping force alone is applied to the frame in the opposite direction to 

calculate the sway moments – the Stage II analysis; 

4. The final solution is the superposition of the Stage I and Stage II analyses. 

 

These steps are illustrated for the above frame as: 

 

 

 

The Stage I analysis is simply that of a non-sway frame, covered previously. The goal 

of the Stage I analysis is to determine the Stage I BMD and the propping force (or 

reaction). 
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Stage II Analysis 

The Stage II analysis proceeds a little differently to usual moment distribution, as 

follows. 

 

If we examine again Stage II of the sample frame, we see that the prop force, , 

causes an unknown amount of sway, 

P

 . However, we also know that the moments 

from the lateral movement of joints depends on the amount of movement (or sway): 

 

 

2

6
AB BA

EI
FEM FEM

L


             

2

3
BA

EI
FEM

L


  

 

Since we don’t know the amount of sway,   , that occurs, we cannot find the FEMs.  
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The Stage II solution procedure is: 

 

1. We assume a sway, (called the arbitrary sway, 
* ); calculate the FEMs this sway 

causes (the arbitrary FEMs). Then, using moment distribution we find the 

moments corresponding to that sway (called the arbitrary moments, *

IIM ). This is 

the Stage II analysis. 

 

2. From this analysis, we solve to find the value of the propping force, *P , that 

would cause the arbitrary sway assumed. 

 

3. Since this force *P  is linearly related to its moments, *

IIM , we can find the 

moments that our known prop force, P , causes, IIM , by just scaling (which is a 

use of the Principle of Superposition): 

 

 
* *

II

II

P M

P M
  

 

Introducing the sway factor,  , which is given by the ratio: 

 

 
*

P

P
   

 

We then have for the actual moments and sway respectively: 

 

 *

II IIM M  

 *    
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Diagrammatically the first two steps are: 

 

 

 

Looking at a plot may also help explain the process: 

 

 

 

The slope of the line gives: 

 

 
*

* * *

II

II II II

P P P M

M M P M
     
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5.2 Example 9: Illustrative Sway Frame 

Problem 

Analyse the following prismatic frame for the bending moment diagram: 

 

 

Solution 

This is a sway frame and thus a two-stage analysis is required: 

 

 

                   Final                 =                    Stage I                  +           Stage II 

 

However, since we have no inter-nodal loading (loading between joints), and since 

we are neglecting axial deformation, Stage I has no moments. Therefore the original 

frame is already just a Stage II analysis – compare the Final and Stage II frames: they 

are mirror images.  
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Next we allow the frame to sway, whilst keeping the joints locked against rotation: 

 

 

 

From this figure, it is clear that the FEMs are: 

 

 
2

2

6

6

BA AB

DC CD

EI
FEM FEM

L
EI

FEM FEM
L

  

  
 

 

Since we don’t know how much it sways, we cannot determine the FEMs. Therefore 

we choose to let it sway an arbitrary amount, * , and then find the force  that 

causes this amount of sway.  Let’s take the arbitrary sway to be: 

*P

 

 * 600

EI
   

 

And so the arbitrary FEMs become: 
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2

2

6 600
100 kNm

6

6 600
100 kNm

6

BA AB

DC CD

EI
FEM FEM

EI

EI
FEM FEM

EI

    
 
    
 

 

 

We could have avoided the step of choosing an intermediate arbitrary sway by simply 

choosing arbitrary FEMs, as we will do in future. 

 

With the FEMs now known, we must carry out a moment distribution to find the 

force, , associated with the arbitrary FEMs (or sway). *P

 

1. Stiffnesses: 

 AB: 
1

6AB
AB

EI
k

L
   
 

  

 BC: 
1

6BC
BC

EI
k

L
   
 

  

 CD: 
1

6CD
CD

EI
k

L
   
 

  

 

2. Distribution Factors: 

 Joint B: 

 
1 1 2

6 6 6
k     

 

1 6
0.5

2 6
1

1 6
0.5

2 6

BA
BA

BD
BC

k
DF

k
DFs

k
DF

k

   
 
  


 


 

 Joint C: is the same as Joint B. 
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3. Fixed-End Moments: 

For the FEMs we simply take the arbitrary FEMs already chosen. 

 

4. Moment Distribution Table: 

 

Joint A B C D

Member AB BA BC CB CD DC

DF 0 0.5 0.5 0.5 0.5 0

FEM +100 +100  +100 +100

Dist.  -50 -50 -50 -50 

C.O. -25 -25 -25  -25

Dist.  +12.5 +12.5 +12.5 +12.5 

C.O. +6.3 +6.3 +6.3  +6.3

Dist.  -3.2 -3.2 -3.2 -3.2 

C.O. -1.6 -1.6 -1.6  -1.6

Dist.  +0.8 +0.8 +0.8 +0.8 

Final +79.7 +60.1 -60.2 -60.2 +60.1 +79.7

 

Thus approximately we have moments of 80 and 60 kNm at the joints. Notice also 

that the result is symmetrical, as it should be. 
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5. Calculate End Shears and Forces 

Span AB: 

 

M about 0

80 60 6 0

23.3 kN 

0

23.3 kN

BA

BA

x

A

A

V

V

F

H



   
  



   





 

 

Span BC: 

This is the same as AB. 

 

Our solution thus far is: 

 

 

 

Thus the total horizontal reaction at A and D is 23.3+23.3 = 46.6 kN. This therefore is 

the force causing the arbitrary moments and sway: 

 

 * 46.6 kNP   
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Returning to the original problem, the actual force applied is 100 kN, not 46.6 kN. 

Thus, by superposition, we obtain the solution to our original problem if we ‘scale 

up’ the current solution by the appropriate amount, the sway factor: 

 

 
*

100
2.15

46.6

P

P
     

 

So if we multiply our current solution by 2.15 we will obtain the solution to our 

actual problem: 

 

 

 

And this then is the final solution. 
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Arbitrary Sway and Arbitrary Moments 

As we have just seen, when we choose an arbitrary sway, * , we could really choose 

handy ‘round’ FEMs instead. For example, taking * 100 EI   for the previous 

frame gives: 

 

 
2

6 100

6
16.67 kNm

AB BA CD DFEM FEM FEM FEM

EI

EI

  

 



C

 

 

This number is not so ‘round’. So instead we usually just choose arbitrary moments, 

such as 100 kNm, as we did in the example: 

 

 
100 kNm

AB BA CD DFEM FEM FEM FEM  


C  

 

And this is much easier to do. But do remember that in choosing an arbitrary 

moment, we are really just choosing an arbitrary sway. As we saw, the arbitrary sway 

associated with the 100 kNm arbitrary moment is: 

 

 

*

2

*

6
100

6
600

EI

EI

 

 
 

 

We will come back to arbitrary moments later in more detail after all of the preceding 

ideas have been explained by example. 
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5.3 Example 10: Simple Sway Frame 

Problem 

Analyse the following prismatic frame for all load effects: 

 

 

Solution 

Firstly we recognize that this is a sway frame and that a two-stage analysis is thus 

required. We choose to prop the frame at C to prevent sway, and use the following 

two-stage analysis: 
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Stage I Analysis 

We proceed as usual for a non-sway frame: 

 

1. Stiffnesses: 

 AB: 
1

8BA
AB

EI
k

L
   
 

  

 BC: ' 3 3 1 1

8
   

4 4 6BC
BC

EI
k

L
   
 

 

2. Distribution Factors: 

 Joint B: 

 
1 1 2

8 8 8
k     

 

1 8
0.5

2 8
1

1 8
0.5

2 8

BA
BA

BD
BC

k
DF

k
DFs

k
DF

k

   
 
  


 


 

 

3. Fixed-End Moments: 

 Span AB: 

 

40 8
40 kNm

8 8BA

PL
FEM


       

 

 

 

40 kNm
8AB

PL
FEM      
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4. Moment Distribution Table: 

 

Joint A B C

Member AB BA BC CB

DF 1 0.5 0.5 0

FEM +40 -40  

Dist.  +20 +20 

C.O. +10   

Final +50 -20 +20 

 

5. Calculate End Shears and Forces 

Span AB: 

 

M about 0

8 50 20 40 4

16.25 kN 

0

40 0

23.75 kN

BA

BA

x

A BA

A

A

V

V

F

H V

H



0     
   



   
   




 

 

Span BC: 

 

M about 0

20 6 0

3.33 kN 

0

0

3.33 kN

C

C

y

BC C

BC

B

V

V

F

V V

V



  

   



  

   




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6. Draw BMD and reactions at a minimum for Stage I. Here we give everything for 

completeness: 
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Stage II Analysis 

In this stage, showing the joints locked against rotation, we are trying to analyse for 

the following loading: 

 

 

 

But since we can’t figure out what the sway,  , caused by the actual prop force, , 

is, we must use an arbitrary sway, 

P
* , and associated arbitrary FEMs: 

 

 

 

So we are using a value of 100 kNm as our arbitrary FEMs – note that we could have 

chosen any handy number. Next we carry out a moment distribution of these arbitrary 

FEMs: 
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Joint A B C

Member AB BA BC CB

DF 1 0.5 0.5 0

FEM +100 +100  

Dist.  -50 -50 

C.O. -25   

Final +75 +50 -50 

 

And we analyse for the reactions: 

 

Span AB: 

 

M about 0

8 50 75 0

15.625 kN 

0

0

15.625 kN

BA

BA

x

A BA

A

A

V

V

F

H V

H



   
   



  
   




 

 

Span BC: 

 

M about 0

50 6 0

8.33 kN 

0

0

8.33 kN

C

C

y

BC C

BC

B

V

V

F

V V

V



  

   



  

   




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The arbitrary solution is thus: 

 

 

 

 

 

We can see that a force of 15.625 kN causes the arbitrary moments in the BMD 

above. However, we are interested in the moments that a force of 16.25 kN would 

cause, and so we scale by the sway factor,  : 

 

 
*

16.25
1.04

15.625

P

P
     
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And so the moments that a force of 16.25 kN causes are thus: 

 

 

 

And this is the final Stage II BMD. 

 

Final Superposition 

To find the total BMD we add the Stage I and Stage II BMDs: 

 

 

 

And from the BMD we can calculate the reactions etc. as usual: 
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Span AB: 

 

M about 0

8 32 128 40 4 0

0 as is expected

0

40 0

40 kN

BA

BA

x

A BA

A

A

V

V

F

H V

H



     
 



   
   




 

 

Span BC: 

 

M about 0

32 6 0

5.33 kN 

0

0

5.33 kN

C

C

y

BC C

BC

B

V

V

F

V V

V



  

   



  

   




 

 

As an aside, it is useful to note that we can calculate the sway also: 

 

 

*

2

*

6
100

8
1066.67

EI

EI

 

 
 

 

And since *   , we have: 

 

 
1066.67 1109.3

1.04
EI E

   
I
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Final Solution 
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5.4 Arbitrary Sway of Rectangular Frames 

Introduction 

For simple rectangular frames, such as the previous example, the arbitrary FEMs 

were straightforward. For example, consider the following structures in which it is 

simple to determine the arbitrary FEMs: 

 

  

Structure 1     Structure 2 

 

So for Structure 1, we have: 

 

 *

2

6
100 kNm sayBD DB

EI
FEM FEM

L
     

 

And for Structure 2: 

 

 * *

2 2

6 6
 and 100 kNm say.BA AB CD DC

EI EI
FEM FEM FEM FEM

L L
        

 

However, we might have members differing in length, stiffness and/or support-types 

and we consider these next. 
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Differing Support Types 

Consider the following frame: 

 

In this case we have: 

 

 

*

2

*

2

6

3

AB BA

CD

EI
FEM FEM

L
EI

FEM
L

  

 
 

 

Since the sway is the same for both sets of FEMs, the arbitrary FEMs must be in the 

same ratio, that is: 

 

 
* *

2 2

: :

6 6 3
: :

6 : 6 : 3

100 kNm : 100 kNm : 50 kNm

*

2

AB BAFEM FEM FEMCD

EI EI

L L
 

EI

L


 

 

In which we have cancelled the common lengths, sways and flexural rigidities. Once 

the arbitrary FEMs are in the correct ratio, the same amount of sway, * , has 

occurred in all members. The above is just the same as choosing 
2

* 100

6

L

EI
  . 
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Different Member Lengths 

In this scenario, for the following frame, we have,: 

 

 

 

 
 

*
2

*

2

6

2

3

AB BA

CD

EI
FEM FEM

h

EI
FEM

h

  

 

 

 

Hence the FEMs must be in the ratio: 

 

 

   
* *

2 2 2

: :

6 6 3
: :

2 2

6 6
: :

4 4
6 : 6 : 12

1 : 1 : 2

50 kNm : 50 kNm : 100 kNm

*

3

AB BAFEM FEM FEM

EI EI EI

hh h
 

CD



 

 

Which could have been achieved by taking 
2

* 200

6

h

EI
  . 
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Different Member Stiffnesses 

For the following frame, we have: 

 

 

 

 

*

2

*

2

3

3

BA

AB

CD

CD

EI
FEM

L

EI
FEM

L

   
 
   
 

 

 

Hence the FEMs must be in the ratio: 

 

 

  * *

2 2

:

3 2 3
:

6 : 3

2 : 1

100 kNm : 50 kNm

BA CDFEM FEM

EI EI

L L
 

 

 

And this results is just the same as choosing 
2

* 100

6

L

EI
  . 
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Class Problems 

Determine an appropriate set of arbitrary moments for the following frames: 

 

1.  

 

2.  

 

3.  
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5.5 Example 11: Rectangular Sway Frame 

Problem 

Analyse the following prismatic frame for all load effects: 

 

 

Solution 

We recognize that this is a sway frame and that a two-stage analysis is thus required. 

Place a prop at D to prevent sway, which gives the following two-stage analysis: 
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Stage I Analysis 

The Stage I analysis is Problem 1 of Section 4.5 and so the solution is only outlined. 

 

1. Stiffnesses: 

 AB: ' 3 3 1

4 4 4AB
AB

EI
k

L
    
 

3

16
   

 BC: 
1

3BCk   

 BD: ' 3 1 3

4 4 16BDk     

Factors: 

  B: 

 

 

2. Distribution 

 Joint

3 1 3 34

16 3 16 48
k      

 

 
9 48 9 48 16 48

0.26 0.26 0.48
34 48 34 48 34 48BA BDF DF C BDDF      

unded to ensure that

 

Notice that the DFs are ro  1DFs  . 

. Fixed-End Moments: 

 Span DE: 

 

3

 

200 2 400 kNmDEFEM      
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4. Moment Distribution Table: 

Joint A B C D E

 

Member AB BA BD BC CB DB DE ED

DF  0.26 0.26 0.48 1 0 

FEM     +400 

Dist.     -400  

C.O.   -200   

Dist.  +52 +52 +96  

C.O.     +48  

Final 0 +52 -148 +96 +4 -400 400 8 +

 

5 d Shea s and For

 

. En r ces: 
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Horizontal equilibrium of Joint B is: 

 

 

 

Hence the prop force, which is the horizontal reaction at D, is 35 kN . 

 

Stage II Analysis 

eeping the joints locked against rotation: 



We allow the frame to sway, whilst k
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The associated arbitrary FEMs are in the ratio: 

 

 

* *

2 2

: :

6 6 3
: :

3 3
6 6

: :
9 9

96 kNm : 96 kNm : 27 kNm

CB BC BAFEM FEM FEM

*

24
3

16

EI EI
     

  

  

 

EI

 

The arbitrary sway associated with these FEMs is: 

 

 

*

2

*

6
96

3
144

EI

EI

 

 
 

 

itrary sway force, : 

Joint A B C D E

And so with these FEMs we analyse for the arb  *P

 

Member AB BA BD BC CB DB DE ED

DF  0.26 0.26 0.48 1 0 

FEM  +27  -96 -96  

Dist.  +17.9 +17.9 +33.2  

C.O.     +16.6  

Final 0 +44.9 +17.9 -62.8 -79.4  

 

The associated member end forces and shears are: 
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From which we see that . Hence: 

 

 

* 58.6 kNP 

*

35
0.597

58.6

P

P
     

 

To find the final moments, we can use a table: 

 

Joint A B C D E

Member AB BA BD BC CB DB DE ED

Stage II*  *

IIM  0 +44.9 +17.9 -62.8 -79.4   

Stage II  IIM  0 +26.8 +10.7 -37.5 -47.4   

Stage I  IM  0 +52 -148 +96 +48 -400 +400 

Final  M  0 137.3 ++78.8 - 58.5 +0.6 -400 +400 
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Note that in this table, the moments for Stage II are *

II IIM M  and the final 

moments are II IM M M  . 

 

The Stage II BMD is: 

 

Thus the final member end forces and shears are: 
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From which we find the reactions and draw the BMD and deflected shape: 
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5.6 Problems I 

1.  

 

37.4 kN

50.3 kNm

0 kN

137.4 kN

50.3 kNm

149.7 kNm

200 kNm

A

D

D

D

BD

BA

BC

V

M

H

V

M

M

M

 
 


 





 

 

2.  

 

14.3 kNm

121.4 kN

8.6 kN

19.9 kNm

38.6 kN

8.6 kN

37.1 kNm

31.5 kNm

A

A

A

D

D

D

B

C

M

V

H

M

V

H

M

M

 

 
 


 
 



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3.  Summer 1998 

 

47.5 kN

15 kN

90 kNm

32.5 kN

15 kN

90.0 kNm

A

A

D

D

D

B

V

H

M

V

H

M

 
 
 

 
 



 

 

 

4.  Summer 2000 

 

 

200 kN

122 kN

200 kN

78 kN

366 kNm

433 kNm

233 kNm

A

A

D

D

B

CB

CD

V

H

V

H

M

M

M

 
 

 
 




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5.  Summer 2001 

 

 

82 kNm

81 kN

40 kN

79 kN

2 kNm

A

A

A

C

B

M

V

H

V

M

 

 
 

 



 

 

 

6.  Summer 2005 

 

5.1 kN

56 kN

118 kNm

150 kN

40 kN

15.4 kNm

55.4 kNm

42.4 kNm

142.4 kNm

A

E

F

F

F

BA

BC

CF

CB

V

V

M

V

H

M

M

M

M

 

 
 

 
 





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7.  Summer 2006 

 

 

93.3 kN

8.1 kN

3.2 kNm

0 kN

8.1 kN

66.7 kN

32 2 kNm

53.3 kNm

21.0 kNm

A

A

C

C

C

D

BA

BD

BC

V

H

M

V

H

V

M

M

M

 
 
 

 

 





 

.

 

8.  Semester 1 2007/8 

 

4 
m

A B

C
D

20 kN/m

40 kN

6 m 2 m 2 m

EI

EI

EI

 

249.2 kNm

73.8 kNm

104 kNm

92 kNm

A

B

C

E

M

M

M

M





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5 Arbitrary Sway of Oblique Frames Using Geometry 

Description 

The sway of these types of members is more complicated. In sketching the deflected 

shape of the frame, we must remember the following: 

1. We ignore axial shortening of members; 

2. Members only deflect perpendicular to their longitudinal axis. 

 

Based on these small-displacement assumptions, a sample sway frame in which the 

joints are locked against rotation, but allowed to sway is: 

 

.7 

 

 

Notice that since member BC does not change length, both joints B and C move 

laterally an equal amount . Also, since joint B must deflect normal to member AB 

it mu at the vertical component of sway at 

joint B, , causes sway m ments to occur in the beam member BC. Looking more 

losely at the displacements at joint B, we have the following diagram: 

*

st move downwards as shown. Notice th

o*

BC

c
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And from the joint displacements it is apparent that the lateral sway of B, * , is 

related to the vertical sway, , and the sway normal to member AB, 

the right-angled triangle shown. This triangle can be related slope of member AB 

using similar triangles: 

*

BC *

BA , through 

 

 

 
* *

* * * *

* *

BA BC
BA BC

L L x

y y y

 
         
 

 
x

y

 

Using these relationships, the fixed end moments are then: 
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And so, considering this frame as prismatic and considering only independent FEMs 

for brevity (for example, BCFEM FEM  and so we just keep BCFEM ), we have: 

 

CB

 
* *

2 2

* *

2 2

: :

3 6 6
: :

3 : 6 : 6

BA BC CD

*

2

*

2

AB BC

BA BC

AB BC CD

FEM FEM FEM

EI EI EI

L L L

L L

     
    
    

 

 
CD

L

 





 

Using the relationships between the various displacements previously established (for 

example,  * *

BA ABL y   ) gives: 

 

 

* *

2 2

2 2

1
: :

2

1 1
: :

2

AB

*

2

AB BC AB

AB BC

L x

y L y L L

x

ABL y L y

 
  

 

L



Thus correct ratios between the arbitrary FEMs are established. 
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Numerical Example 

For the following frame, determine a set of arbitrary FEMs: 

 

 

 

irstly, we draw the sway configuration, keeping all joints locked against rotation: 

 

F
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Evidently, the FEMs for members AB and BC are directly related to the arbitrary 

sway, . For members DB and DE we need to consider joint D carefully: 

 

*

 

 

Linking the displacement triangle to the geometry of member DE we have the similar 

iangles: 

 

tr

 

 

Hence: 

 

 
* *

* * *

* *

4 2 4
2 1

4 4
DE DB

DE DB

 
         

 
 *
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Considering the FEMs as they relate to the sway configuration, we have: 

 

 

 

  
   

* * *

2 2 2

* * *

22 2 2

*** *

: : :

6 3 6 6
: : :

6 3 6 6
: : :

4 3 6 4 2

6 26 16 3
: : :

16 9 36 32

6 3 1 6
: : :

16 9 6 32
108 kNm : 96 kNm : 48 kNm : 76.4 kNm

BA BC DB DE

*

2

*

2

AB BC BD

DB DE

FEM FEM FEM FEM

EI EI EI EI

L L L L

         
       
       

   

 

 

DE


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Class Problems 

Determine an appropriate set of arbitrary moments for the following frames: 

 

1.  

 

2.  

 

3.  
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5.8 Example 12: Oblique Sway Frame I 

Using moment distribution, analyse the following frame for the reactions, deflected 

shape and bending moment diagrams: 

 

Problem – Autumn 2007 

 

Solution 

We recognize that this is a sway frame and that a two-stage analysis is required. We 

put a prop at C to prevent sway, which gives the following two-stage analysis: 
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Stage I Analysis 

1. Stiffnesses: 

 AB: ' 3
k  

3 10 3EI EI
      

4 4 5 2AB
ABL 

 BC: 
4

1
4BC

BC

EI E
k    

I

L


 
 

 BD: 
4

1
4BD

BD

EI EI
k

L
   
 

 

 

2. Distribution Factors: 

 Joint B: 

 
3 5 3 2 2 2

1 0.6
2 2 5 2 5 2BA BCk DF DF         0.4

 

 Joint C: 

 
1 1

1 1 2 0.5 0.5
2 2CB CDk DF DF         

 

3. Fixed-End Moments: 

 Span BC: 

 

2 212 4
16 kNm

12 12BC

wL
FEM


       

 

2

16 kNm
12CB

wL
FEM      

 

Notice that the 80 kN point load at C does not cause span moments and hence has no 

EM. Thus, if the frame was only loaded by the 80 kN point load, there would be no 

eed for a Stage I analysis. 

F

n
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4. Moment Distribution Table: 

 B D 

 

Joint A C 

Member AB BA BC CB CD DE

DF  0.50.6 0.4 0.5 0

FEM   +16 -16  

Dist.  +8-9.6 -6.4 +8 

C.O.   +4 -3.2  +4

Dist.  -2.4 -1.6 +1.6 +1.6 

C.O.   +0.8 -0.8  +0.8

Dist.  -0.5 -0.3 +0.4 +0.4 

Final 0 -12.5 +12.5 -10 +10 +4.8

 

5. End Shears and Forces: 

 

 

2

M about 0

4
12 10 12.5 4 0

2
23.4 kN

23.4 kN

CB

CB

D

B

V

V

V



     

  

  



 

 

 

80UDL

 

M about 0

12 4 5 23.4 7 4 4 0

18.1 kN

18.1 80  98.1 kN

UDL

UDL

A

P

P

P P P



       
  

    


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Some points on these calculations are: 

 We only solve enough of the structure to find the prop force, . 

 Since joint C is a right-angled connection,  of member BC becomes the 

xi orce i e r CD and so the vertical reaction at D is 

s n. 

 Lastly, the final prop force reaction must allow for both the prop force due 

to the UDL and the 80 kN which is applied directly to the support.  

 

Sketch this last point: 

 

P

 CBV

a al f n m mbe

23.4 kNDV    as how


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Stage II Analysis 

We allow the frame to sway, whilst keeping the joints locked against rotation: 

 

 

 

Considering the angle of member AB as  , and following that angle around to 

rientate the displacement triangle at joint B gives: o

 

 

 

From which we can get the ratios of the arbitrary deflections: 
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The FEMs are the following: 

 

 

And so we have: 

 

 
     

* *

2 2

* *

2 2

* *

: :

3 6 6
: :

3 10 6 4 6 4
: :

5 4
30 5 24 3 24

: :
25 4 16 4 16

240 kNm : 180 kNm : 240 kNm

BA BC CD

*

2

*

2

*

4

AB BC

BA BC

FEM FEM FEM

EI EI EI

L L

EI EI EI

             
    

    

       

  

 

CDL





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The arbitrary sway associated with these FEMs is: 

 

 
  * *

2

6 4 160
240

4

EI

EI
      

 

And so with these FEMs we analyse for the arbitrary sway force, : 

C D 

*P

 

Joint A B 

Member AB BA BC CB CD DE 

DF  0.6 0.4 0.5 0.5 0 

FEM  +240 -180 -180 +240 +240 

Dist.  -36 -24 -30 -30  

C.O.   -15 -12  -15 

Dist.  +9 +6 +6 +6  

C.O.   +3 +3  +3 

Dist.  -1.8 -1.2 -1.5 -1.5  

Final 0 +211.2 -211.2 -214.5 +214.5 +228 

 

Again we only calculate that which is sufficient to find the arbitrary sway force, : *P

 

 

M about 0

214.5 228 4 0

110.6 kN
D

D

C

H

H



   
   


 

 

 

e consider the portion of the frame BCD: W



Structural Analysis III 

Dr. C. Caprani 141

 

M about 0

211.2 4 110.6 228 4 0

106.4 kN

D

D

B

V

V



     

   



 

 

C g hole fra ve: onsiderin the w me, we ha

 

*P
*

M about 0

4 228 0

243.2 kN

A

P



7 DV    

   


 

 

Hence: 

 

 

*

98.1P    0.4033
243.2P

 

 

To find the final moments, we use a table: 

 

Joint A B C D

Member AB BA BC CB CD DE

Stage II*  *

IIM  0 +211.2 -211.2 -214.5 +214.5 +228

Stage II  IIM  0 +85.2 -85.2 -86.5 +86.5 +92.0

Stage I  IM  0 -12.5 +12.5 -10 +10 +4.8

Final  M  0 +72.7 -72.7 -96.5 +96.5 +96.8
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Recall the formulae used in the table: *

II IIM M  and II IM M M  . Also, the 

actual sway is  

 

* 144 58.09
0.4033

EI EI
       

 

he member forces are: T

 

 

 

Note that for member AB, even though the 18.3 kN and 31.7 kN end forces are not 

e shear and axial force, we can still apply horizontal and vertical equilibrium to find 

the reactions at the ends of the memb and shear forces in member 

A d to reso e components of both the 18.3 kN and 31.7 kN end forces 

p l to the me is

 

Horizontal equilibrium of joint 

 

th

er. To find the axial 

B we nee lve th

arallel and norma mber ax . 

C is: 
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And so the final BMD, deflected shape and reactions are: 
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5.9 Arbitrary Sway of Oblique Frames Using the ICR 

Description 

For some frames, the method of working with the displacement triangles can be 

complex and a simpler approach is to consider the Instantaneous Centre of Rotation, 

CI , (ICR) about which the frame rotates. Thus all displacements of the frame can be 

ated to the rotation of the lamina, rel CI BC , about CI , * . Then, when working out 

the ratios, *  will cancel just as *  did previously. 

 

 

 

To reiterate: working with *  may offer a simpler solution than working with * . 

Both are correct, they are merely alternatives. 



Structural Analysis III 

Dr. C. Caprani 145

Numerical Example I 

Taking the same frame as we dealt with previously, we will use the centre of rotation 

approach: 

 

 

 

The first step is to identify the CI  by producing the lines of the members until they 

intercept as per the following diagram. 

 

Note that in the diagram, the distances to the CI  are worked out by similar triangles. 

The 4-4-4 2  triangle of member DE  A is similar to the CI E triangle and so the 

lengths CI C  and CI D  are determined. 
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From the length CI B , we have, using the S R  for small angles: 

 

 * *6   

 

Similarly, length  CI D  gives: 

 

 * *6 2DE    
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The length BD  times the rotation of the lamina, * , gives: 

 

 * *6BD    

 

The sway diagram for identifying the FEMs is repeated here: 

 

 

 

And so the FEMs are in the ratio: 

 

 

 

* * *

2 2 2

* * *

22 2 2

: : :
*

2

*

3 6 6
: :

6 3 6 6
: : :

4 3 6 4 2

BA BC DB DE

6
:

AB BC BD DE

DB DE

FEM FEM FEM FEM

EI EI EI EI

L L L L

        
     

       
   

 
 
 
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Now substitute in the relationships between *  an the variod us sways: 

 

 

       
 

** * *

22 2 2

6 6 26 6 3 6 6 6
: : :

4 3 6 4 2

36 2
: : :

16 9 36 32

9 9 2
: 2 : 1 :

4 8

18 : 16 : 8 : 9 2

36 18 36

  

 

 

And multiplying by 6, say, so that rounding won’t affect results gives: 

 

 

And this is the same set of arbitrary moments we calculated earlier when using 

displacement triangles instead of this 

: : :

108 kNm : 96 kNm : 48 kNm : 76.4 kNm
BA BC DB DEFEM FEM FEM FEM

 

CI  method. 

 

This should help emphasize to you that choosing displacement triangles or the CI  

method is simply a matter of preference and ease of calculation. 
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Numerical Example II 

In this example, we just work out the arbitrary moments for the frame of Example 11. 

 

 

 

We identify the CI  by producing the lines of the members until they intercept as per 

the following diagram. 

 

The distances to the CI  are worked out by similar triangles. The 3-4-5 triangle of 

member AB is similar to the CBI C

s the ‘3’ side of the triangle and so the lengths 

 triangle and so the length of member BC of 4 m 

form CI B  and CI C  are determined 

since they are the 5 and 4 sides respectively. 
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Using the S R  relations we have: 

 From the length CI C , we have: *

3
*16  ; 

 Similarly, length  CI B  gives: * *20

3BA   ; 

 The length BC  times *  gives: * *4BC   . 

 

The FEMs are the following: 
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And so we have: 

 

 
     

* *

2 2

* *

2 2

* *

: :

3 6 6
: :

3 10 6 4 6 4
: :

5 4
30 20 24 24 16

: 4 :
25 3 16 16 3

*

2

*

2

*

4

180 kNm : 240 kNm

BA BC CD

240 kNm :

AB BC CD

BA BC

FEM FEM FEM

EI EI EI

L L L

EI EI EI

  

               
     

     

     

 

 

Which is as we found previously. The arbitrary sways are thus: 



 

 

 

  *

2

6 4
2

4

EI *

* * *

160
40

16 160 30

3

EI

EI EI
 

 

    
 

  
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Class Problems 

Using the CI  method, verify the arbitrary moments found previously for the 

following frames: 

 

1.  

 

2.  

 

3.  

 

 

 



Structural Analysis III 

Dr. C. Caprani 153

5.10 Example 13: Oblique Sway Frame II 

oment diagrams for the following frames: 

Problem – Summer 2007 

Draw the bending m

 

 

Structure 1 

 

 

Structure 2 
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Solution 

Structure 1 

re, and so a two-stage analysis is not required. Also, 

e pin at C the 40 kN 

oint load does not cause any moments to be transferred around the frame. Therefore 

member CD does not enter the moment distribution analysis: essentially the beam CD 

is a separate structure, except that the horizontal restraint at D prevents sway of ABC. 

 

1. Stiffnesses: 

 AB: 

This is a non-sway structu

importantly, since there is no moment transferred through th

p

5
1

5AB
AB

EI EI
k

L
   
 

   

 BC: ' 3 3 8

4 4 4BC
BC

EI EI
k

L
    
 

 
6

4


 CD  - there is no moment transferred through the pin at C. 

 

2. Distribution Factors: 

 Joint B: 

 

: 0BDk 

6 5 2 2 3 2
1 0.4

4 2 5 2 5 2BA BCk DF DF         0.6

 

3. Fixed-End Moments: 

 Span BC: 

 

2 212 4
24 kNm

8 8BC

wL
FEM


       
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4. Moment Distribution Table: 

 

Joint A B C

Member AB BA BC CB

DF  0.4 0.6 

FEM   +24 

Dist.  -9.6 -14.4 

C.O. -4.8   

Final -4.8 -9.6 +9.6 0

 

 and Forces: 

 

5. End Shears

 

2

M about 0

4
9.6 12 4 0CV

2

21.6 kN

0

12 4 21.6 0

26.4 kN

C

y

BC

BC

B

V

F

V

V



    

   



    

  




 

 

Zero shear is at 21.6 12 1.8 m  to the left of C. Hence: 

 

 

max

2

max

max

M about 0

1.8
12 21.6 1.8 0

2
19.44 kNm

M

M

M



     

  


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The axial force transmitted to member CD from the frame ABC is: 

 

 

2

M about 0

4
4.8 12 3 0

2
30.4 kN

C

C

A

H

H



    

   


 

 

Thus, 30.4 kNDH    

 

And since the span CD is a simply supported beam, the BMD is thus: 
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Structure 2 

This is a sway structure and so a two-stage analysis is required: 

 

 

 

Looking at this superposition, we can recognize Stage I as Structure I, which we have 

already solved. Hence only Stage II is required. The sway diagram is: 
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From which, using the S R  relation, we have: 

 From the length CI C , we have: * *3  ; 

 Similarly, length  CI B  gives: * *5BA   ; 

 The length BC  gives: * *4BC   . 

 

The FEMs are: 

 

 
   

* *

2 2

* *

2 2

* *

:

6 3
:

6 5 3 8
:

5 4
30 24

5 : 4
25 16

20 kNm : 20 kNm

BA BC

BA BC

BA BC

FEM FEM

EI EI

L L

EI EI

    

         
   

   

 

 

 

The associated sways are: 

 

 

  * *

2

* * *

6 5 3.33
5 20

5
3.33 10

3 3

EI

EI

EI E

 



   

      
 

I

 

Joint A B C

Member AB BA BC CB

DF  0.4 0.6 

FEM -20 -20 -20 

Dist.  +16 +24 

C.O. +8   

Final -12 -4 +4 0
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The sway force is found from: 

 

 

*

*

M about 0

12 3 0

4 kN

A

P

P



  

   


 

 

 

 
*

30.4
7.6

4

P

P
     

 

Joint A B C 

Member AB BA BC CB 

Stage II*  *

IIM  -12 -4 +4 0 

Stage II  IIM  -91.2 -30.4 +30.4 0 

Stage I  IM  -4.8 -9.6 +9.6 0 

Final  M  -96 -40 +40 0 
 

* 10 76
7.6

EI EI
       

 

2

M about 0

4
40 12 4 0

2

14 kN

0

12 4 14 0

34 kN

C

C

y

BC

BC

B

V

V

F

V

V



    

   



    

  




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Zero shear occurs at 14 12 1.1 7 m  to the left of C. Hence: 

 

max

2

max

max

M about 0

1.17
12 21.6 1.17 0

2
8.2 kNm

M

M

M



     

  


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5.11 Problems II 

9.   91.8 kN

9.7 kN

9.3 kNm

0 kN

16.5 kN

88.2 kN

93.1 kN

39.5 kNm

29.4 kNm

79.0 kNm

49.6 kNm

68.4 kNm

A

A

A

C

C

E

E

E

BA

BD

BC

D

V

H

M

V

H

V

H

M

M

M

M

M

 
 
 


 

 
 
 




  

 

10.   167.6 kN

96.0 kN

435.6 kNm

80.4 kN

122.6 kNm

A

A

C

B

V

H

M

V

M

 
 
 

 



A
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11.   56.1 kN

71.8 kN

56.1 kN

28.2 kN

94.9 kNm

118.9 kNm

17.9 kNm

217.9 kNm

A

A

D

D

D

B

CD

CB

V

H

V

H

M

M

M

M

 
 

 
 
 





 

 

12.   33.5 kN

6.0 kN

82.1 kNm

86.5 kN

6 kN

119.1 kNm

42.5 kNm

116.3 kNm

A

A

A

D

C

D

B

C

V

H

V

H

M

M

M

 
 
 

 
 






 

M
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6

6.1 Past Exam Papers 

Sample Paper 2007/8 

 
2.  Using Moment Distribution: 
 

(i) Determine the bending moment moments for the frame in Fig. Q2; 
 

(ii) Draw the bending moment diagram for the frame, showing all important values; 
 

(iii) Draw the deflected shape diagram for the frame. 
(40 marks) 

 
 
 

. Appendix 
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Semester 1 2007/8 

 
QUESTION 2 
 
For the frame shown in Fig. Q2, using Moment Distribution: 

 diagram for the frame, showing all important values; 

D m for the frame. 
(40 marks) 

 

 

 
(i) Draw the bending moment
 
(ii) raw the deflected shape diagra
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Ans. 249.2 kNm; 73.8 kNm; 104 kNmA B CM M M    
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QUESTION 2 
 
For the frame shown in Fig. Q2, using Moment Distribution: 
 
(iii) Draw the bending moment diagram for the frame, showing all important values; 
 
(iv) Draw the deflected shape diagram for the frame. 

(40 marks) 
 
 
 

FIG. Q2
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QUESTION 2 
 
For the frame shown in Fig. Q2, using Moment Distribution: 
 
(v) Draw the bending moment diagram for the frame, showing all important values; 
 
(vi) Draw the deflected shape diagram for the frame. 

(40 marks) 
 

FIG. Q2
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QUESTION 2 
 
For the frame shown in Fig. Q2, using Moment Distribution: 
 
(i) Draw the bending moment diagram for the frame, showing all important values; 
 
(ii) Draw the deflected shape diagram for the frame. 

 (25 marks) 
 

FIG. Q2
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Structural Analysis III 

Dr. C. Caprani 168

Semester 1 2009/10 

 
QUESTION 3 
 
For the frame shown in Fig. Q3, using Moment Distribution: 
 
(i) Draw the bending moment diagram for the frame, showing all important values; 
 
(ii) Draw the deflected shape diagram for the frame. 

(25 marks) 
 
 
 

FIG. Q3
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Ans. 64.3 kNm; 62.9 kNm; 55.4 kNmA B CM M M    
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For both loads and displacements: 
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