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1. Introduction 

1.1 General 

Macaulayôs Method is a means to find the equation that describes the deflected shape 

of a beam. From this equation, any deflection of interest can be found. 

 

Before Macaulayôs paper of 1919, the equation for the deflection of beams could not 

be found in closed form. Different equations for bending moment were used at 

different locations in the beam. 

 

Macaulayôs Method enables us to write a single equation for bending moment for the 

full length of the beam. When coupled with the Euler-Bernoulli theory, we can then 

integrate the expression for bending moment to find the equation for deflection. 

 

Before looking at the deflection of beams, there are some preliminary results needed 

and these are introduced here. 

 

Some spreadsheet results are presented in these notes; the relevant spreadsheets are 

available from www.colincaprani.com.  

http://www.colincaprani.com/
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1.2 Background 

Euler-Bernoulli Bending Theory 

Basic Behaviour 

Consider a portion of a bending member before and after the application of load: 

 

 

 

We can see that the fibres of the material contract on the upper face, and so they must 

be in compression. Since they lengthen on the lower face they must then be in 

tension. Thus the stresses vary from compression to tension over the depth of the 

beam and so at some point through the cross section, there must therefore be material 

which is neither shortening nor lengthening, and is thus unstressed. This is the neutral 

axis of the section. 

 

Geometry of Deformation 

Next we consider the above phenomenon in more detail. Consider a portion of the 

beam of length dx between planes AG and BH. We are particularly interest in the 

arbitrary fibre EF a distance y below the neutral axis, CD. Before loading, EF is the 

same distance as CD. After loading, CôDô remains the same length as CD, since it is 

the neutral axis to give: 

 

 dx Rdq=  
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However, after loading, EôFô is no longer the same length as EF, but has increased in 

length. We have: 

 

 ( )' 'E F R y dq= +  
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And so the strain in fibre EF is: 

 

 
Change in length ' '

Original length

E F EF

EF
e

-
= =  

 

But since EF CD dx R dq= = =  we have: 

 

 
( )R y d R d y

R d R

q q
e

q

+ -
= =  

 

Thus: 

 

 
y

R
e=  

 

And so strain is distributed linearly across the section. Note that since no constitutive 

law was used in this derivation, this relationship holds for any form of material 

behaviour (linearly elastic, plastic etc.). 

 

Linear Elastic Behaviour 

Next we will consider a specific case of material behaviour linear elasticity for which 

we know: 

 

 
E

s
e=  

 

And so we have: 
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y

E R

s
e= =  

And this gives: 

 

 
E

y
R

s=  

 

This is the equation of a straight line, and so the stress is linearly distributed across 

the cross section for a linear elastic material subject to bending. 

 

 

 

Equilibrium with Applied Moment  

Lastly, we will consider how these stresses provide resistance to the applied moment 

and force. Consider the elemental area dA, a distance y from the neutral axis, as 

shown in the diagram. The force that this area offers is: 

 

 dF dAs=  

 

And the total longitudinal force on the cross section is: 
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A A

F dF dAs= =ñ ñ  

 

Since there is no applied axial force, only moment, this force must be zero: 

 

 0
A

F dAs= =ñ  

 

Using the relationship we have for stress, we have: 

 

 0
A

E
y dA

R
=ñ  

 

Since E R is not zero, the integral must be zero. This is the first moment of area 

about the neutral axis (where the integral must be zero. This is the first moment of 

area about the neutral axis (where y is measured from), and this is in turn the 

definition of the neutral axis: it passes through the centroidal axis of the cross section. 

 

The total internal resisting moment offered by the stresses on the cross section is 

given by summing up the forces by distances from the neutral axis: 

 

 2

A A A

E
M y dF y dA y dA

R
s= = =ñ ñ ñ 

 

The last integral here is the second moment of area and is denoted I, to give: 

 

 
EI

M
R

=  

 

Thus: 
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1M

EI R
=  

 

Summary 

Combining the relationships found gives the fundamental expression, sometimes 

called the Engineers Theory of Bending: 

 

 
M E

I y R

s
= =  

 

This expression links stress, moment and geometry of deformation and is thus 

extremely important. 
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General Deflection Equation 

From the Euler-Bernoulli Theory of Bending, at a point along a beam, we know: 

 

 
1 M

R EI
=  

 

where: 

¶ R is the radius of curvature of the point, and 1 R is the curvature; 

¶ M is the bending moment at the point; 

¶ E is the elastic modulus; 

¶ I is the second moment of area at the point. 

 

We also know that dx R dq=  and so 1 R d dxq= . Further, for small displacements, 

tan dy dxq qº º  and so: 

 

 
2

2

1 d y

R dx
=  

 

Where y is the deflection at the point, and x is the distance of the point along the 

beam. Hence, the fundamental equation in finding deflections is: 

 

 
2

2

x

x

d y M

dx EI
=  

 

In which the subscripts show that both M and EI are functions of x and so may 

change along the length of the beam. 
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Illustrative Example 

Consider the following beam with material property 230 kN/mmE= : 

 

 

 

For this and subsequent problems, we need to know how to determine the flexural 

rigidity, EI, whilst being aware of the unit conversions required: 

 

 
3 3

8 4200 600
36 10  mm

12 12

bd
I

Ö
= = = ³  

 
( )( )8 3 2

6

30 36 10
108 10  kNm

10
EI

³
= = ³  

 

In which the unit conversions for this are: 

 

 

( )

( )

4

2
2

6 2 2

kN
mm

mm
 kNm

10 mm  per m
EI

å õ
Öæ ö

ç ÷= =  

 

To find the deflection, we need to begin by getting an equation for the bending 

moments in the beam by taking free body diagrams: 
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For the free-body diagram A to the cut 
1 1

X X- , 1 1M about 0X X- =ä  gives: 

 

()

()

40 0

40

M x x

M x x

- =

=
 

 

For the second cut 2 2M about 0X X- =ä  gives: 

 

() ( )

() ( )

40 80 4 0

40 80 4

M x x x

M x x x

- + - =

= - -
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So the final equation for the bending moment is: 

 

 ()
( )

( ) ( )

40 0 4 portion 

40 80 4 4 8 portion 

x x AB
M x

x x x BC

ë ¢ ¢
=ì

- - ¢ ¢í
 

 

 

 

The equations differ by the ( )80 4x- -  term, which only comes into play once we are 

beyond B where the point load of 80 kN is. 

 

Going back to our basic formula, to find the deflection we use: 

 

() ()2

2
 

M x M xd y
y dx

dx EI EI
= Ý =ññ  

 

But since we have two equations for the bending moment, we will have two different 

integrations and four constants of integration. 
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Though it is solvable, every extra load would cause two more constants of 

integration. Therefore for even ordinary forms of loading, the integrations could be 

quite involved. 

 

The solution is to have some means of óturning offô the ( )80 4x- -  term when 4x¢  

and turning it on when 4x> . This is what Macaulayôs Method allows us to do. It 

recognizes that when 4x¢  the value in the brackets, ( )4x- , is negative, and when 

4x>  the value in the brackets is positive. So a Macaulay bracket, []Ö, is defined to be 

zero when the term inside it is negative, and takes its value when the term inside it is 

positive: 

 

 [ ]
0 4

4
4 4

x
x

x x

¢ë
- =ì

- >í
 

 

Another way to think of the Macaulay bracket is: 

 

 [ ] ( )4 max 4,0x x- = -  

 

The above is the essence of Macaulayôs Method. The idea of the special brackets is 

routed in a strong mathematical background which is required for more advanced 

understanding and applications. So we next examine this background, whilst trying 

no to loose sight of its essence, explained above. 

 

Note: when implementing a Macaulay analysis in MS Excel or Matlab, it is easier to 

use the max function, as above, rather than lots of if  statements. 
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1.3 Discontinuity Functions 

Background 

This section looks at the mathematics that lies behind Macaulayôs Method. The 

method relies upon special functions which are quite unlike usual mathematical 

functions. Whereas usual functions of variables are continuous, these functions have 

discontinuities. But it is these discontinuities that make them so useful for our 

purpose. However, because of the discontinuities these functions have to be treated 

carefully, and we will clearly define how we will use them. There are two types. 

 

Notation 

In mathematics, discontinuity functions are usually represented with angled brackets 

to distinguish them from other types of brackets: 

¶ Usual ordinary brackets:  () [] {}Ö Ö Ö 

¶ Usual discontinuity brackets: Ö 

 

However (and this is a big one), we will use square brackets to represent our 

discontinuity functions. This is because in handwriting they are more easily 

distinguishable than the angled brackets which can look similar to numbers.  

 

Therefore, we adopt the following convention here: 

¶ Ordinary functions:  () {}Ö Ö 

¶ Discontinuity functions:  []Ö 
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Macaulay Functions 

Macaulay functions represent quantities that begin at a point a. Before point a the 

function has zero value, after point a the function has a defined value. So, for 

example, point a might be the time at which a light was turned on, and the function 

then represents the brightness in the room: zero before a and bright after a.  

 

Mathematically: 

 

 
()[ ]

( )

0 when 

when 

where 0,1,2,...

n

nn

x a
F x x a

x a x a

n

¢ëî
= - =ì

- >îí

=

 

 

When the exponent 0n= , we have: 

 

 ()[ ]
0

0

0 when 

1 when 

x a
F x x a

x a

¢ë
= - =ì

>í
 

 

This is called the step function, because when it is plotted we have: 
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For 1n= , we have: 

 

 ()[ ]
1

1

0 when 

when 

x a
F x x a

x a x a

¢ë
= - =ì

- >í
 

 

 

For 2n= , we have: 

 

 ()[ ]
( )

2

21

0 when 

when 

x a
F x x a

x a x a

¢ëî
= - =ì

- >îí

 

 

 

And so on for any value of n. 
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Singularity Functions 

Singularity functions behave differently to Macaulay functions. They are defined to 

be zero everywhere except point a. So in the light switch example the singularity 

function could represent the action of switching on the light. 

 

Mathematically: 

 

 
()[ ]

0 when 

when 

where 1, 2, 3,...

n

n

x a
F x x a

x a

n

¸ë
= - =ì

¤ =í

=- - -

 

 

The singularity arises since when 1n=-, for example, we have: 

 

 ()1

0 when 1

when 

x a
F x

x ax a
-

¸ëè ø
= =ìé ù¤ =-ê úí

 

 

Two singularity functions, very important for us, are: 

 

1. When 1n=-, the function represents a unit force at point a: 
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2. When 2n=-, the function represents a unit moment located at point a: 

 

 

 

Integration of Discontinuity Functions 

These functions can be integrated almost like ordinary functions: 

 

Macaulay functions ( 0n² ): 

 

 ()
()

[ ]
[ ]

1

1

0 0

i.e.
1 1

n
x x

nn

n

x aF x
F x x a

n n

+

+
-

= - =
+ +

ñ ñ  

 

Singularity functions ( 0n< ): 

 

 () () [ ] [ ]
1

1

0 0

i.e.
x x

n n

n n
F x F x x a x a

+

+
= - = -ñ ñ  
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1.4 Modelling of Load Types 

Basis 

Since our aim is to find a single equation for the bending moments along the beam, 

we will use discontinuity functions to represent the loads. However, since we will be 

taking moments, we need to know how different load types will relate to the bending 

moments. The relationship between moment and load is: 

 

 ()
()

()
()

and 
dV x dM x

w x V x
dx dx

= =  

 

Thus: 

 

 
()

()

() ()

2

2

d M x
w x

dx

M x w x dx

=

=ññ

 

 

So we will take the double integral of the discontinuity representation of a load to 

find its representation in bending moment. 
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Moment Load 

A moment load of value M, located at point a, is represented by [ ]
2

M x a
-

-  and so 

appears in the bending moment equation as: 

 

 () [ ] [ ]
2 0

M x M x a dx M x a
-

= - = -ññ  

 

Point Load 

A point load of value P, located at point a, is represented by [ ]
1

P x a
-

-  and so 

appears in the bending moment equation as: 

 

 () [ ] [ ]
1 1

M x P x a dx P x a
-

= - = -ññ  

 

Uniformly Distributed Load 

A UDL of value w, beginning at point a and carrying on to the end of the beam, is 

represented by the step function [ ]
0

w x a-  and so appears in the bending moment 

equation as: 

 

 () [ ] [ ]
0 2

2

w
M x w x a dx x a= - = -ññ  
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Patch Load 

If the UDL finishes before the end of the beam ï sometimes called a patch load ï we 

have a difficulty. This is because a Macaulay function óturns onô at point a and never 

turns off again. Therefore, to cancel its effect beyond its finish point (point b say), we 

turn on a new load that cancels out the original load, giving a net load of zero, as 

shown: 
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Structurally this is the same as doing the following superposition: 

 

 

 

And finally mathematically we represent the patch load that starts at point a and 

finishes at point b as: 

 

 [ ] [ ]
0 0

w x a w x b- - - 

 

Giving the resulting bending moment equation as: 

 

 () [ ] [ ]{ } [ ] [ ]
0 0 2 2

2 2

w w
M x w x a w x b dx x a x b= - - - = - - -ññ  
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1.5 Analysis Procedure 

Steps in Analysis 

1. Draw a free body diagram of the member and take moments about the cut to 

obtain an equation for ()M x . 

2. Equate ()M x  to 
2

2

d y
EI

dx
 - this is Equation 1. 

3. Integrate Equation 1 to obtain an expression for the rotations along the beam, 

dy
EI

dx
 - this is Equation 2, and has rotation constant of integration C

q
. 

4. Integrate Equation 2 to obtain an expression for the deflections along the beam, 

EIy  - this is Equation 3, and has deflection constant of integration C
d
. 

5. Us known displacements at support points to calculate the unknown constants 

of integration, and any unknown reactions. 

6. Substitute the calculated values into the previous equations: 

a. Substitute for any unknown reactions; 

b.  Substitute the value for C
q
 into Equation 2, to give Equation 4; 

c. Substitute the value for C
d
 into Equation 3, giving Equation 5. 

7. Solve for required displacements by substituting the location into Equation 4 or 

5 as appropriate. 

 

Note that the constant of integration notation reflects the following: 

¶ C
q
 is the rotation where 0x= , i.e. the start of the beam; 

¶ C
d
 is the deflection where 0x= . 

The constants of integration will always be in units of kN and m since we will keep 

our loads and distances in these units. Thus our final deflections will be in units of m, 

and our rotations in units of rads. 
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Finding the Maximum Deflection 

A usual problem is to find the maximum deflection. Given any curve ()y f x= , we 

know from calculus that y reaches a maximum at the location where 0
dy

dx
= . This is 

no different in our case where y is now deflection and 
dy

dx
 is the rotation. Therefore: 

 

A local maximum displacement occurs at a point of zero rotation 

 

The term local maximum indicates that there may be a few points on the deflected 

shape where there is zero rotation, or local maximum deflections. The overall biggest 

deflection will be the biggest of these local maxima. For example: 

 

 

 

So in this beam we have 0q=  at two locations, giving two local maximum 

deflections, 
1,max

y  and 
2,max

y . The overall largest deflection is ( )max 1,max 2,max
max ,y y y= . 

 

Lastly, to find the location of the maximum deflection we need to find where 0q= . 

Thus we need to solve the problemôs Equation 4 to find an x that gives 0q= . 

Sometimes this can be done algebraically, but often it is done using trial and error. 

Once the x is found that gives 0q= , we know that this is also a local maximum 

deflection and so use this x in Equation 5 to find the local maximum deflection. 
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Sign Convention 

In Macaulayôs Method, we will assume there to be tension on the bottom of the 

member by drawing our ()M x  arrow coming from the bottom of the member. By 

doing this, we orient the x-y axis system as normal: positive y upwards; positive x to 

the right; anti-clockwise rotations are positive ï all as shown below. We do this even 

(e.g. a cantilever) where it is apparent that tension is on top of the beam. In this way, 

we know that downward deflections will always be algebraically negative. 

 

 

 

When it comes to frame members at an angle, we just imagine the above diagrams 

rotated to the angle of the member. 
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2. Determinate Beams 

2.1 Example 1 ï Point Load 

Problem 

For the beam looked at previously, calculate the rotations at the supports, show the 

maximum deflection is at midspan, and calculate the maximum deflection. 
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Solution 

Step 1 

The appropriate free-body diagram is: 

 

 

 

Note that in this diagram we have taken the cut so that all loading is accounted for. 

Taking moments about the cut, we have: 

 

() [ ]40 80 4 0M x x x- + - = 

 

In which the Macaulay brackets have been used to indicate that when 4x¢  the term 

involving the 80 kN point load should become zero. Hence: 

 

() [ ]40 80 4M x x x= - - 

 

Step 2 

Thus we write: 

 

 () [ ]
2

2
40 80 4

d y
M x EI x x

dx
= = - - Equation 1 
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Step 3 

Integrate Equation 1 to get: 

 

 [ ]
2240 80

4
2 2

dy
EI x x C

dx
q= - - + Equation 2 

 

Step 4 

Integrate Equation 2 to get: 

 

 [ ]
3340 80

4
6 6

EIy x x C x Cq d= - - + + Equation 3 

 

Notice that we havenôt divided in by the denominators. This makes it easier to check 

for errors since, for example, we can follow the 40 kN reaction at A all the way 

through the calculation. 

 

Step 5 

To determine the constants of integration we use the known displacements at the 

supports. That is: 

¶ Support A: located at 0x= , deflection is zero, i.e. 0y= ; 

¶ Support C: located at 8x= , deflection is zero, i.e. 0y= . 

 

So, using Equation 3, for the first boundary condition, 0y=  at 0x=  gives: 

 

 () () [ ] ()
3340 80

0 0 0 4 0
6 6

EI C Cq d= - - + + 

 

 Impose the Macaulay bracket to get: 
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() () [ ]

3340 80
0 0 0 4

6 6
EI = - - ()0

0 0 0 0

C C

C

q d

d

+ +

= - + +

 

 

Therefore: 

 

0Cd=  

 

Again using Equation 3 for the second boundary condition of 0y=  at 8x=  gives: 

 

 () () [ ] ()
3340 80

0 8 8 4 8 0
6 6

EI Cq= - - + + 

 

Since the term in the Macaulay brackets is positive, we keep its value. Note also that 

we have used the fact that we know 0Cd= . Thus: 

 

20480 5120
0 8

6 6

48 15360

320

C

C

C

q

q

q

= - +

=-

=-

 

 

Which is in units of kN and m, as discussed previously.  

 

Step 6 

Now with the constants known, we re-write Equations 2 & 3 to get Equations 4 & 5: 

 

 [ ]
2240 80

4 320
2 2

dy
EI x x

dx
= - - - Equation 4 
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 [ ]
3340 80

4 320
6 6

EIy x x x= - - -  Equation 5 

 

With Equations 4 & 5 found, we can now calculate any deformation of interest. 

 

Rotation at A 

We are interested in 
A

dy

dx
q¹  at 0x= . Thus, using Equation 4: 

 

() [ ]
2240 80

0 0 4
2 2

AEIq= - - 320

320

320

A

A

EI

EI

q

q

-

=-

-
=

 

 

From before we have 3 2108 10  kNmEI= ³ , hence: 

 

 
3

320
0.003 rads

108 10
A
q

-
= =-

³
 

 

The negative sign indicates a clockwise rotation at A as shown: 
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Rotation at C 

We are interested in 
C

dy

dx
q¹  at 8x= . Again, using Equation 4: 

 

() [ ]
2240 80

8 8 4 320
2 2

1280 640 320

320

0.003 rads

C

C

C

EI

EI

EI

q

q

q

= - - -

= - -

+
=

=+

 

 

So this rotation is equal, but opposite in sign, to the rotation at A, as shown: 

 



Structural Analysis III 

Dr. C. Caprani 34 

 

 

The rotations are thus symmetrical as is expected of a symmetrical beam 

symmetrically loaded.  

 

Location of Maximum Deflection 

Since the rotations are symmetrical, we suspect that the maximum deflection is at the 

centre of the beam, but we will check this and not assume it. Thus we seek to confirm 

that the rotation at B (i.e. 4x= ) is zero. Using Equation 4: 

 

() [ ]
2240 80

4 4 4
2 2

BEIq= - - 320

320 0 320

0

B

B

EIq

q

-

= - -

=

 

 

Therefore the maximum deflection does occur at midspan. 
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Maximum Deflection 

Substituting 4x= , the location of the zero rotation, into Equation 5: 

 

() [ ]
3340 80

4 4 4
6 6

BEId= - - ()320 4

2560
0 1280

6

853.33

B

B

EI

EI

d

d

-

= - -

-
=

 

 

In which we have once again used the Macaulay bracket. Thus: 

 

3

3

853.33
7.9 10  m

108 10

7.9 mm

Bd
--

= =- ³
³

=-

 

 

Since the deflection is negative we know it to be downward as expected.  

 

In summary then, the final displacements are: 
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2.2 Example 2 ï Patch Load 

Problem 

In this example we take the same beam as before with the same load as before, except 

this time the 80 kN load will be spread over 4 m to give a UDL of 20 kN/m applied to 

the centre of the beam as shown: 
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Solution 

Step 1 

Since we are dealing with a patch load we must extend the applied load beyond D 

(due to the limitations of a Macaulay bracket) and put an upwards load from D 

onwards to cancel the effect of the extra load. Hence the free-body diagram is: 

 

 

 

Again we have taken the cut far enough to the right that all loading is accounted for. 

Taking moments about the cut, we have: 

 

() [ ] [ ]
2 220 20

40 2 6 0
2 2

M x x x x- + - - - = 

 

Again the Macaulay brackets have been used to indicate when terms should become 

zero. Hence: 

 

() [ ] [ ]
2 220 20

40 2 6
2 2

M x x x x= - - + - 
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Step 2 

Thus we write: 

 

 () [ ] [ ]
2

2 2

2

20 20
40 2 6

2 2

d y
M x EI x x x

dx
= = - - + - Equation 1 

 

Step 3 

Integrate Equation 1 to get: 

 

 [ ] [ ]
3 3240 20 20

2 6
2 6 6

dy
EI x x x C

dx
q= - - + - + Equation 2 

 

Step 4 

Integrate Equation 2 to get: 

 

 [ ] [ ]
4 4340 20 20

2 6
6 24 24

EIy x x x C x Cq d= - - + - + + Equation 3 

As before, notice that we havenôt divided in by the denominators. 

 

Step 5 

The boundary conditions are: 

¶ Support A: 0y=  at 0x= ; 

¶ Support B: 0y=  at 8x= . 

 

So for the first boundary condition: 

 

 () () [ ]
4340 20

0 0 0 2
6 24

EI = - - [ ]
420

0 6
24
+ - ()0C Cq d+ +  
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0Cd=  

 

For the second boundary condition: 

 

 
() () () ()

3 4 440 20 20
0 8 6 2 8

6 24 24

293.33

EI C

C

q

q

= - + +

=-

 

 

Step 6 

Insert constants into Equations 2 & 3: 

 

 [ ] [ ]
3 3240 20 20

2 6 293.33
2 6 6

dy
EI x x x

dx
= - - + - -  Equation 4 

 

 [ ] [ ]
4 4340 20 20

2 6 293.33
6 24 24

EIy x x x x= - - + - -  Equation 5 

 

To compare the effect of smearing the 80 kN load over 4 m rather than having it 

concentrated at midspan, we calculate the midspan deflection: 

 

() () [ ]
43 4

max

40 20 20
4 2 4 6

6 24 24
EId = - + - ()293.33 4

760

-

=-

 

 

Therefore: 

 

max 3

max

760 760
0.00704 m

108 20

7.04 mm

EI
d

d

- -
= = =-

³

=-
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This is therefore a downward deflection as expected. Comparing it to the 7.9 mm 

deflection for the 80 kN point load, we see that smearing the load has reduced 

deflection, as may be expected. 

 

 

 

Problem: 

¶ Verify that the maximum deflection occurs at the centre of the beam; 

¶ Calculate the end rotations. 
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2.3 Example 3 ï Moment Load 

Problem 

For this example we take the same beam again, except this time it is loaded by a 

moment load at midspan, as shown: 
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Solution 

Before beginning Macaulayôs Method, we need to calculate the reactions: 

 

 

 

Step 1 

The free-body diagram is: 

 

Taking moments about the cut, we have: 

 

() [ ]
0

10 80 4 0M x x x+ - - = 

 

Notice a special point here. We have used our knowledge of the singularity function 

representation of a moment load to essentially locate the moment load at 4x=  in the 

equations above. Refer back to page 22 to see why this is done. Continuing: 

 

() [ ]
0

10 80 4M x x x=- + - 
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Step 2 

 () [ ]
2

0

2
10 80 4

d y
M x EI x x

dx
= =- + - Equation 1 

 

Step 3 

 [ ]
1210

80 4
2

dy
EI x x C

dx
q=- + - + Equation 2 

 

Step 4 

 [ ]
2310 80

4
6 2

EIy x x C x Cq d=- + - + + Equation 3 

 

Step 5 

We know 0y=  at 0x= , thus: 

 

 
() () [ ]

2310 80
0 0 0 4

6 2
EI =- + - ()0

0

C C

C

q d

d

+ +

=

 

0y=  at 8x= , thus: 

 

() () ()
3 210 80

0 8 4 8
6 2

80

3

EI C

C

q

q

=- + +

=+

 

 

Step 6 

 [ ]
1210 80

80 4
2 3

dy
EI x x

dx
=- + - + Equation 4 
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 [ ]
2310 80 80

4
6 2 3

EIy x x x=- + - + Equation 5 

 

So for the deflection at C: 

 

() [ ]
2310 80

4 4 4
6 2

CEId=- + - ()
80

4
3

0CEId

+

=

 

 

 

Problem: 

¶ Verify that the rotation at A and B are equal in magnitude and sense; 

¶ Find the location and value of the maximum deflection. 
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2.4 Example 4 ï Beam with Overhangs and Multiple Loads 

Problem 

For the following beam, determine the maximum deflection, taking 

3 220 10  kNmEI= ³ : 
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Solution 

As always, before beginning Macaulayôs Method, we need to calculate the reactions: 

 

 

 

Taking moments about B: 

 

 
( ) ( )

2
40 2 10 2 2 8 40 0

2

2.5 kN i.e. 

E

E

V

V

ë ûå õ
- Ö + Ö Ö + - + =ì üæ ö

ç ÷í ý

=+ ¬

 

 

Summing vertical forces: 

 

 
( )2.5 40 2 10 0

57.5 kN, i.e. 

B

B

V

V

+ - - Ö =

=+ ¬
 

 

With the reactions calculated, we begin by drawing the free body diagram for 

Macaulayôs Method: 
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Note the following points: 

¶ The patch load has been extended all the way to the end of the beam and a 

cancelling load has been applied from D onwards; 

¶ The cut has been taken so that all forces applied to the beam are to the left of 

the cut. Though the 40 kNm moment is to the right of the cut, and so not in the 

diagram, its effect is accounted for in the reactions which are included. 

 

Taking moments about the cut: 

 

  

 

So we have Equation 1: 

 

  




























































































































