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Structural Analysis I

1. Introduction

1.1 General

Mac aul ay Gssa mbbadtdhfioddthe equation that describes the deflected shape

of a beam. From this equation, any deflection of interest can be found.

Bef ore Macaul aydés paper of 1919, t he e
be found in closed form. Diffen¢ equations for bending moment were used at

different locations in the beam.

Macaul ayés Method enables us to write
full length of the beam. When coupled with the ExBernoulli theory, we can then

integrate lhe expression for bending moment to find the equation for deflection.

Before looking at the deflection of beams, there are some preliminary results needed

and these are introduced here.

Some spreadsheet results are presented in these notes; the speransheets are

available fromwww.colincaprani.com
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1.2 Background

Euler-Bernoulli Bending Theory

Basic Behaviour

Consider a portion of bendingmembetbefore and after the application of load

We can see that the fibres of the material contract on the uppeafacso they must
be in compression Snce they lenghen on the lower facethey must then be in
tension Thus the stresses vary from compressionettsionover the depth of the
beamand soat some point through the cross section, theustrtherefore benaterial

which is neitheshorteningnor lengtheningand is thus unstssed. This is the neutral

axisof the section.

Geometry of Deformation

Next we consider the above phenomenon in more detail. Consider a portion of the
beam of lengthdx betweenplanesAG and BH. We are particularly interest ithe
arbitraryfibre EF a distancey below the neitral axis CD. Before loadingEF is the
samedistanceasCD. After loading,CdDdremains the same length @P, sinceit is

the neutral &is to give:

dx=Rdy
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However ,after loading,EG-0is no longer the same length 8B, but has increased in

length We have:

E'F'=(R +)d

.
>

sw >

% sose seem me awra?
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And sothestrain infibre EFis:

o= Change inlength E F - 'EF
Original length EF

ButsinceEF =CD =dx R @& we have:

(R+y)dg -Rdg _y
R dg R

Thus:

®
1

<

And so strain iglistributedlinearly acrosshe section.Note that since no consitive
law was used in this derivation, this relationship holds for any form of material

behaviaurr (linearly elastic, plastic etc.).

Linear Elastic Behaviour
Next we will considera spedfic case of material behaviolinear elasticity fomwhich

we know:

m|®»

And so we have:
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m|®»
ol

And this gives:

This is the equation of a straight lired so the stress is linearljistributed across

the cross section for a linear elastic material subject to bending.

Te

23

Equilibrium with Applied Moment
Lastly, we will consider how these stresses provide resistance to the appirethimo
and force Considerthe elemental aredA, a distancey from the neutral axis, as

shown in thediagram The force that thiarea offers is:

dF =s dA

And the totalongitudinalforce on the cross section is:
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F = N dF :AsﬁdA
Since there is no applied axial force, only moment, this force must be zero:

F:fjsdA £

Using the relationship we have for stress, we have:

E . _

Since E/R is not zerothe integral must be zerohik is the first moment of area

about the neutral axis (whetiee integral must be zerohif is the first moment of
area about the neutral axis (whegrds measured from), and this is in turn the

definition of the neutral axis: it passes through the centroidal axis of the cross section.

The totalinternal resistingnoment offered by thetresseon the cross section is

given by summing up the fieesby distances frorthe neutral axis:

e _ E
M—mde —Aﬁ dA = A);ﬁ/

Thelastintegralhere is thesecond moment of aa@nd is denoted to give:

Thus:
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Summary

Combining the relationships found gives the fundameasgiression sometimes
called theEngineers Theory of Bending

M
|

o i'm

=2
y

This expressionlinks stress, moment and geometry ad¢formationand is thus
extremelyimportant
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General Deflection Equation

From the EuleBernoulli Theory of Bending, at a point along a beam, we know:

where:
1 Ris the radius of curvature of the point, and is the curvature;
M is the bending moment at the point;

E is the elastic modulus;

= = =1

| is the second moment of area at the point.

We also know thatix= R dy and sol/R= dg/ dx. Further, for small displacements,
g° tan g°y/dxand so

d’y
dx¥

1_
R

Wherey is the deflection at the point, anxdis the distance of the point along the

beam. Hence, the fundamental equation in finding deflections is:

dy_M,
d¢  El

X

In which the subscripts show that bdvh and ElI are functions ofx and so may

change along the length of the beam.
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lllustrative Example

Consider the following beam with material propekty= 30 kN/mnf

8o Al
9}& ‘L c

B
T SO N

W
3

For this and subsequent problemse need tknow how todetermine the flexural

rigidity, El, whilst being aware of the unit conversions required:

. )
,_bd® 2000600 .. .o

12 12

(30)(36* 10)
10°

El = 408 30 kNni

In which the unit conversions for this are:

9 o)
== (10‘5’mrn2 per rﬁ) =KNm

To find the deflection, & need to begin by gettingn equation for the bending

moments in the beam by taking free body diagrams:
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ST (" T K

A S LI g S e

% | L

o X X2 $yo

A N M)

Yof X_,

%0
A :
=Y M0

¢o ¢ b

Forthe freebody diagramA to the cutX, - X, § M aboutX, - X, =(gives:

M (x)- 40x =0
M (x) = 40x

For thesecond cu@y M aboutX, - X, =(gives:

M(x)- 40x 80 x 4 0=
M (x) =40x -80(x 4

13 Dr. C. Caprani



Structural Analysis I

So thefinal equation for the bending moment is:

M(X)_e 40X 0 ¢& 4&( portionAB)
_:f40x- 80x -4 4 % 8 portiorBC)

{ o .

; % i X

+ ty4o

———— oty

L | I | 1) Chaim)
' I—-S’O(x"‘f)

M) = Gox * .

0O

The equations differ by the80(x —4) term,which only comes into play once we are

beyondB where the point load &0 kN is.

Going back to our basic formula, to find the deflection we use:

d’y _ M(x) ’ ~ M(%)
dZ  El v Y N dx

But since we have two equations for the bending moment, we will have two different

integrations and four constantsiofegration
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Though it is solvale, every extra loadvould causetwo more constants of
integration.Thereforefor even ordinary forms of loading, the integraticmmald be

quite involved.

The solution is to have-8G0 Meaernmehanxts o f
and turning it on wherx>4, This i s what Macaul dy 6 s
recognizes that wher ¢ 4 the value in the bracketéx— 4), IS negative, and when
X >4 the value in the brackets is positive. So a Macaulay bra[@]ieils defined to be

zero when the term inside it is negative, and takes its value when the term inside it is

positive:

e 0 x¢4
[X_4] _%x—4 X

Another way to think of the Macaulay bracket is:

[x- 4] =max(x 4,0

The above is the ess &hedaeaoftle spdaatbaaoketaiy 0 s
routed in a strong mathematical background which is required for more advanced
undersanding and applications. So we next examine this background, whilst trying

no to loose sight of its essence, explained above.

Note: when implementing a Macaulay analysis in MS Excel or Matlab, it is easier to

use thamax function, as abovgerather thandts ofif statements.
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1.3 Discontinuity Functions

Background

This section | ooks at the mathematics
method relies upon special functions which are quite unlike usual mathematical
functions. Whereas usual functions ofigafes are continuous, these functions have
discontinuities But it is these discontinuities that make them so useful for our
purpose. However, because of the discontinuities these functions have to be treated

carefully, and we will clearly define how wallwse them. There are two types.

Notation
In mathematics, discontinuity functions are usually represented with angled brackets
to distinguish them from other types of brackets:

9 Usual adinary brackets: (C)) []O {}

1 Usual dscontinuity backets: (O

However (and this is a big one), we will use square brackets to represent our
discontinuity functions This is because in handwriting they are more easily

distinguishable than the angled brackets which can look sitnilaumbers.

Therefore, we adopt the following convention here:

1 Ordinary functions: % {}

1 Discontinuity functions: [C]J
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Macaulay Functions

Macaulay functions represent quantities that begin at a poiB&ore pointa the
function has zero value, after poiatthe function has a defined value. So, for
example, poine might be the time at which a light was turned on, and the function

then represents the brightness in the room: zero bafamd bright aftee.
Mathematically:
s 0 whenx ¢ a

RO=lx A E

wheren= 0,1,2,...

whenx >a

When the exponemt =0, we have:

_ o €0 whenx¢a
Ro(x)=[x -4 1 whenx>a

This is called the step function, because when it is plotted we have:

£ o)z De-ad”

E,oq =
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For n=1, we have:

1 € 0 whenxt¢a

Fl(X) =[X 'a] =

i X- a whenx >a

For n=2, we have:

E 0 whenx ¢ a

Fl(X) =[X 'a]Z =

i(x- a)° whenx >a

And so on for any value of.
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Singularity Functions

Singularity functions behave differently to Macaulay functions. They are defined to
be zero evgwhere except poina. So in the light switch example the singularity

functioncouldrepresent thaction ofswitching on the light.

Mathematically:

€0 whenx, a

F()=[x 4"

i@ whenx =a
wheren= -1, 2, 3.

The singularity arises since wher= 4, for examplewe have:

. (X):é,_ gqéo whenx , a
- 8x- a Him whenx =a

Two singularity functionsvery importantor us are

1. Whenn= 4, the function representsuait forceat pointa:

'E_'CX)-‘: [_X ’O"_X—'
F@=1

'E-\ (y=0 LdH=o
a B X
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2. Whenn= 2, the function representsuait momeniocated at poin&:

Integration of Discontinuity Functions

These functions can be integrated almost like ordinary functions:

Macaulay functionsi{? 0):

CasFe) i e oA

?:“(X)_ e i.e. O[ﬁ a —
Singularity functions 0 <0):

(Xf:Fn(x):Fn+l(x) e, :[ﬁ-a]n [ 4"
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1.4 Modelling of Load Types

Basis

Since our aim is to find a single equation for the bending moments along the beam,
we will use discontinuity functions to represent the loads. However, since we will be
taking momentswe need to know how different load types will relate to the bending

moments. The relationship between moment and load is:

Q
>
o
=
=
|
o
=
.

Thus:

d*M (x)
dx’

M (x) =/ v X) dx

w(X) =

So we will take the double integral of the discontinuity regméstion of a load to

find its representation in bending moment.
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Moment Load

A moment load of valud/, located at poing, is represented biv [x- a]'2 and so

appears in the bending moment equation as:
M(x)=piM{x -d~ dx ¥ x &

Point Load

A point load of valueP, located at poing, is represented byD[x- a]'1 and so

appears in the bending moment equation as:
M(x)=iRfx -9~ dx # x &

Uniformly Distributed Load

A UDL of valuew, beginning at poina and carryig on to the end of the beam, is
represented byhe step functionw[x— a]o and so appears in the bending moment

equation as:

M (x)=Fvihx -4 dx S[x &
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Patch Load

If the UDL finishes before the end of the beamometimes called a fudn loadi we
have a difficulty. This 1 s be caamdnevera
turns off again. Thereforép cancel its effect beyond its finish po({pbintb say), we
turn on a new load that cancels out the original load, givingtdoad of zerpas

shown:

A(‘UD("
N-s----.
. > X
a b
upL
3
Wi e
a "b -
_l.-
s
b
s > X
st Bl w5 se w e g o

23 Dr. C. Caprani
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Structurally this is the same as doing the following superposition:

W “\ L
;fﬁ b & ’5%

And finally mathematically we represent the patch load that starts at gp@nt

finishes at poinb as:

o ' wx

Giving the resliing bending moment equation as:

M)=n{rx 4" x §) o Uex B2 x B
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1.5 Analysis Procedure

Steps in Analysis

1.

. EquateM (x) to El

Draw a free body diagram of the member and take moments about the cut to

obtain an equation foi ().
d’y
dx?

Integrate Equation 1 to obtain an expression for the rotations along the beam,

- this isEquation 1.

El %’ - this isEquation 2, and hasotationconstant of integratiol, .
X

Integrate Equation 2 to obtain an expression for the deflections along the beam,

Ely - this isEquation 3, and hasleflectionconstant of integratioc, .

Us known displacements at support pointgdtculate the unknown constants
of integration, and any unknown reactions.
Substitute the calculated values into the previous equations:

a. Substitute for any unknown reactions;

b. Substitute the value fa€, into Equation 2, to giv&quation 4;

c. Substitute the value fdC, into Equation 3, givindequation 5.

. Solve for required displacements by substituting the location into Equation 4 or

5 as appropriate.

Note that the constant of integration notatieflects he following

f
f

Cq is the rotation wherex=0, i.e. the start of the beam;

C, is the deflection where=0.

The constants of integration will always be in unitkN and m since we will keep

our loads and distances in these units. Thus our final deflections will be in units of m,

and our rotations in units of rads.
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Finding the Maximum Deflection

A usual problem is to find the maximum deflection. Given any cuyrwef (x) we

know from calculus thay reaches a maximum at the location Wh%lye:O. This is
X

no different in our case wheyas now deflection an% is the rotation. Therefore:
X

A local maximum displacement occursapoint of zero rotation

The term local maximum indicates that there may be a few points on the deflected
shape where there is zero rotation, or local maximum deflections. The overall biggest

deflection will be the biggest dfiese local maxima. For example:

So in this beam we havg=0 at two locations, giving two local maximum

deflections,y, .., and y, ... The overall largest deflection ig,,, = MaX( ¥, ue Vs ) -

Lastly, to find the location of the maximum deflection we need to find wiyeré.
Thus we need to solve the xtatgwwestgegsdos E
Sometimes this can be done algetally, but often it is done using trial and error.
Once thex is found that givesy =0, we know that this is also a local maximum

deflection and so use thisn Equation 5 to find the local maximum deflection.
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Sign Convention

InMac aul ayés Met hod, we wi || assume t
member by drawing ouM (x) arrow coming from the bottom of the member. By
doing this, we orient the-y axis system as normal: positiyaipwards positivex to
the right anticlockwise rotations are positiveall as shown belowVe do thiseven
(e.g.acantilevejy where it is apparent that tensimon topof the beamlin this way,

we know that downward deflections will always be algebraically negative.

H Fosi h\..e
/ do',{ed'wws ‘X

wprowels ’
/V

Acsume
}U\SEM e\

bottermr

'x

e
Positve 1 shatien

ank —cloclruns e
X

When it comes to frame members at an anglejustimagine the above diagrams

rotated to the angle of the member.

27 Dr. C. Caprani
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2. Determinate Beams

2.1 Example1li Point Load

Problem

For the beam looked at previouslyalculate the rotations at the suppostsow the

maximumdeflection is at midspan, andlculate the maximum deflection.

=+§8!>0n
ST
3
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Solution

Step 1
The appropriate frebody diagram is:

i#xx—lf

Note that in this diagram we have taken the cut so that all loading is accounted for.

Taking moments about the cut, we have:
M(x)- 40x 8dx 4 ¢

In which the Macaulay brackets have been used to indicate thatxwhérthe term

involving the 80 kN point load should become zero. Hence
M(x)=40x -8 x 4

Step 2

Thus we write:

M(x):EIW 20x 8dx 4 Equation 1

29 Dr. C. Caprani
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Step 3
IntegrateEquation 1 to get

El—2 dy 40 X 80[ 2 Gt Equation 2

Step4
Integrate Equation 2 to get:

Ely=— 80[ 3 CGrx C, Equation 3

Notice that we haveno6ét divi dederioghedky t |
for errors since, for example, we can follow the 40 kN reactioA all the way

through the calculation.
Step 5
To determine the constants of integration we use the known displacements at the

supports. That is:
1 SupportA: located atx =0, deflection is zero, i.ey =0;

1 SupportC: located atx =8, deflection is zero, i.ey =0.

So, using Equation 3, for the first boundary conditipr, 0 at x =0 gives:

E1(0)=2(0° <o 4 cx(9 c,

Impose the Macaulay bracket to get:
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E1(0)=2(0 -Z1e<F +c,(0) €,
0=0-0 & Ct
Therefore:
C,=0

Again using Equation 3 for the second boundary conditiop=0 at x=8 gives:
E1(0)=2(8° {8 4° o9 «

Since the term in the Macaulay brackets is positive, we keep its value. Note also that
we have used the fact that we kn@y=0. Thus:

20480 5120

0= &
6 6 7
48C, = -15360
C, = 320

q

Which is in units of kN and m, as discussed previously.

Step 6
Now with the constants known, wewgite Equations 2 & 3 to get Equations 4 & 5:

El—= dy 40 X2 80[ Equation 4
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Ely —4—0 80[ 3 320x Equation 5

With Equations 4 & 5 found, we can now calculate any deformation of interest.

Rotation at A

We are interested ig, * %’ at x=0. Thus, using Equation 4:
X

Elg, =%)(o)2 % 320

Elg, = 320
7 _-320
A El

From before we hav&l =108 310 kNm, hence:

-320

= = 0-003 rad:
s 108 10

The negative sign indicates a clockwise rotatioA as shown:
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Rotation at C

We are interested ig, * (;_y at x=8. Again, using Equation 4:
X

Elqc=4—20(8)2 -%)[8 |

Elg. =1280 -640 -320
4320

qc El
= 9€.003 rads

So this rotation is equal, but opposite in signthe rotation af, as shown:

33 Dr. C. Caprani



Structural Analysis I

8.

The rotations are thus symmetrical as is expected of a symmetrical beam

symmetrically loaded.

Location of Maximum Deflection
Since the rotations are symme#l, we suspect that the maximum deflection is at the
centre of the beam, but we will check this and not assume it. Thus we seek to confirm

that the rotation & (i.e. x=4) is zero. Using Equation 4:

Elg, :%)(4)2 % 320

Elg, =320 -0 320
gs =0

Therefore the maximum deflection does occur at midspan.
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Maximum Deflection

Substitutingx =4, the location othe zero rotation, into Equation 5:

e10, =2(e) 29y - a2

EIdB:%) 0 1280
_-853.33

a
B El

In which we have once again used the Macaulay btatkas:

_ - 853.33
® 1083 16
= 7.9 mm

=79 18°

Since the deflection is negative we know it to be downward as expected.

In summary thenhie final displacements are:
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2.2 Example 2i Patch Load

Problem
In this example we take the same beam as before with thelcadnes before, except
this time the 80 kN load will be spread over 4 m to give a UDL of 20 kN/m applied to

the centre of the beam as shown:

’Lo/uJ/M

ﬁg_%i
c

(>
o
et T
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Solution

Step 1

Since we aralealingwith a patchload we must extend the applied load beydnhd
(due to the Initations of a Macaulay bracket) and put an upwards load fbom

onwards to cancel the effect of the extra load. Hence thd&ee diagram is:

X
A *Wijmx)

X

‘44 X =2
7]‘,&-6

Again we have taken the cut far enough to the right that all loading is accounted for.

Taking moments abotte cut, we have:
M (x)- 40x F 2 20[ G

Again the Macaulay brackets have been used to indicate when terms should become

zero. Hence:

M (x) = 40x -? —+0[ q
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Step 2

Thus we write:

d2
M (X) = dxg

Step 3
Integrate Equizon 1 to get:

Eld—y—4—O 2

Step4

Integrate Equation 2 to get:

40 5 2C
Ely=—
Y= 6

24

Slx 2

4

¥ 20{ g’ Equation 1
—iﬁ X 6]3— G Equation 2
—gﬁ x 6~ Cx* C Equation 3

As before, notice that e  h adivieled @by the denominators.

Step 5

The boundary conditions are:
1 SupportA: y=0 at x=0;
1 SupportB: y=0 at x=8.

Sofor the first boundary condition

£1(0)= 20 -2Fe<F + Do +c,(0) <.

38
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For the second boundary condition:

E1(0)=2(8° 29" £]9° =

C, = 293.33

q

Step 6
Insert constants into Equations 2 & 3:

El gi 420 % 20[x 2)° —+([x 6]~ 2933t  Equation 4
40, 20 . 20 g0 .
Ely=—2x" — [ 2] Eﬁx 6]- 293.33 Equation 5

To compare the effect of smearing the 80 kN load over 4 m rather than having it

concentrated ahidspan, we calculate the midspan deflection:

E1df, =24 22)° M-zggsu

= 760
Therefore:
dmaX:-760 = "0 00704 n
El 108 20
d. = 74.04 mm

max
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This is therefore a downward deflection as exped@mparing itto the 7.9 mm
deflection for the 80 kN point load, we see that smearhmg lbad has reduced

deflection, as may be expected.

Problem:
9 Verify that the maximum deflection occurs at the centre of the beam;

i Calculate the end rotations.
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2.3 Example 317 Moment Load

Problem

For this example we take the same beam again, exceptriasittis loaded by a

moment load at midspan, as shown:

o batun
e N
»
o€ )\, &4

A’g, %b
k ¥
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Solution

Before beginning MacauléyMethod, we need to calculate the reactions:

Step 1
The freebody diagram is:

o X

X

Taking moments about the cut, we have:

M(x)+10x -8dx 4 ¢

Notice a special point here. We have used our knowledge of the singularity function
representation of a moment load to essentially locate the moment |laaddain the

equations above. Refer back to p2g@do see why this is done. Continuing:

M(x)= 10x 8(x 4
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Step 2
_ d2y _ 0 .
M(x)—EIW =10x 8dx 4 Equation 1
Step 3
g Y- 19, so[x 4 ¢ Equation 2
dx 2 7
Step4
Ely = -%Oxa 4829[x 4 Cx C, Equation 3
Step 5
We knowy =0 at x=0, thus:
_ 10, 3 2
E(0)= (0] <& +c,(0) <,
C,=0
y=0 at x=8, thus:
El(0)= (8 (9 =,
6 2
c,= &
3
Step 6
dy 10, 1 80 :
El —= —x° 80[x — Equation 4
X 2 [ 4} 3 a
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Ely = -%O 4829[x 4F %O-I% Equation 5

So forthe deflection a€:

e = 22a) By + L)

Eld. =0

Problem:
1 Verify that the rotation aA andB are equal in magnitude and sense

9 Find the location and value of the maximum deflection.
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2.4 Example 41 Beam with Overhangs and Multiple Loads

Problem

For the fdlowing beam, determine the maximum deflection, taking
El =20 310G kNni:

lOL\}/M
) o

77
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Solution

Asalways,e f or e beginning Macaul ayobs

A )lfo

&
| P - P —+—t

2 Z Z g /

Taking moments abo:

- (40 9 6—103% c2$+af 0 0+ =

V.= 25kNi.e.

Summing verticaforces:

V,+25-40 (21® 0=
V,= B7.5kN, i.e.

Met hod,

With the reactions calculated, we begin by drawing the free body diagram for

Macaul ayés Met hod:
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Note the following points:
1 The patch load has been extended all the way to the end of the beam and a
cancelling loachas been applied frod onwards;

1 The cut has been taken so that all forces applied to the beam are to the left of
the cut. Though the 40 KNm moment is to the right of the cut, and so not in the

diagram, its effect is accounted for in the reactions whiehreluded.

Taking moments about the cut:

So we havéquation 1.
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