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1. Introduction 

1.1 Background 

In the linear elastic analysis of structures, we have assumed that compression 

members are limited in load capacity in the same way that tension members are, by 

ensuring the yield stress of the material is not exceeded. However, as can easily be 

checked with a ruler, compression members often fail long before the material yields 

due to buckling. So our problem is to identify reduced stress limits that should apply 

for compression members so that buckling does not occur. 

 

The first person to study this problem was Euler (‘oil-er’) as a means to demonstrate 

his ability to solve differential equations. Some of the important results in buckling 

retain his name. 

 

 

 
Leonhard Euler (1707 – 1783) 
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1.2 Stability of Equilibrium 

A structure will be in an initial equilibrium position. The stability of its equilibrium 

can be assessed by examining the structure’s behaviour in an adjacent position. There 

are three states:  

• Stable equilibrium: the structure tends to return to its initial position. This is 

the best situation to have structures in. 

• Neutral (or critical) equilibrium: the structure moves to a displaced 

configuration and remains in that position. This does not make for good 

structure. 

• Unstable equilibrium: any movement from the initial position causes further 

movement resulting in a ‘runaway’ failure of the structure. 
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In relation to columns, the stability of equilibrium takes the form: 

• Stable: deflections to not result in extra bending moments, and hence extra 

deflections. 

• Critical crP P= : the load is at a critical value where the column remains in any 

displaced position. 

• Unstable crP P> : the load is greater than the critical load and so divergent 

displacements occur, leading to failure. 

 

These situations look like this: 
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2. Buckling Solutions 

2.1 Introduction 

A perfect column (perfectly straight) is one which is perfectly straight and so carries 

axial load up to the yield stress of the material. Since in reality columns are not 

perfectly straight, buckling occurs: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In our solutions for buckling, we will find that both the perfectly straight and buckled 

profiles are both possible theoretically. However, since it is the real behaviour that is 

of interest, we will focus on the buckled solutions. 
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2.2 Pinned-Pinned Column 

Formulation 

Firstly, consider the buckled configuration of a pin-ended column and draw a free 

body diagram of part of the column: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From this we see: 

 

 M Py= −  
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So for equilibrium: 

 

 0M Py+ =  

 

We know from Euler-Bernoulli bending theory that: 

 

 
2

2

d yM EI
dx

=  

 

And so we have: 

 

 
2

2 0d yEI Py
dx

+ =  (1) 

 

Dividing across by EI gives: 

 

 
2

2
0d y P y

dx EI
+ =  

 

If we make the substitution: 

 

 2 Pk
EI

=  (2) 

 

We then have: 

 

 
2

2
2 0d y k y

dx
+ =  (3) 
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This is a second-order linear homogenous differential equation in y. We seek a 

solution for y which will be some function of x. The Appendix shows that the general 

solution to this equation is: 

 

 cos siny A kx B kx= +  (4) 

 

where A and B are constants to be evaluated from the boundary conditions of the 

problem. 
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Relevant Solution 

To get the particular solution to our problem, we know that we have no deflection at 

the pinned end, that is: 

 

 At 0, 0x y= =  

 

Substituting this into equation (4): 

 

 0 cos 0 sin 0A k B k= +  

 

Since ( )cos 0 1=  and ( )sin 0 0= , we have: 

 

 ( ) ( )0 1 0
0
A B

A
= +

=
 

 

Thus equation (4) becomes: 

 

 siny B kx=  (5) 

 

Using the second boundary condition, at , 0x L y= = , we have: 

 

 0 sinB kL=  (6) 

 

There are two possibilities now. The first is 0B =  which makes 0y =  by equation (5)

. This means that a possible solution is for no buckling to occur, in other words, the 

perfect column. Since we know that this is highly unlikely, and that buckling doesn’t 

occur, we must consider the other possibility from equation (6): 
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 sin 0kL =  (7) 

 

We know that this only happens at values of: 

 

 0, ,2 ,3 ,...kL
n
π π π
π

=
=

 

 

where 0,1,2,3,...n = . Therefore we have: 

 

 nk
L
π

=  (8) 

 

So from equation (2) we have: 

 

 
2 2

2
2

P nk
EI L

π
= =  

 

And so the critical loads at which the column buckles are: 

 

 
2 2

2cr

n EIP
L
π

=  (9) 

 

Further, by using equation (8) in equation (5) the buckled shape is got as: 

 

 sin ny B x
L
π

=  (10) 
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Euler Buckling Load 

Since we are interested in the lowest load that the column will buckle at, we use the 

value 1n =  to find the Euler Buckling Load, EP , as: 

 

 
2

2E

EIP
L

π
=  (11) 

 

And we also find the displaced shape from equation (10) as: 

 

 siny B x
L
π

=  (12) 

 

This defines a half sine-wave curve as being the buckled shape of the column. Notice 

that we have no information about B, the amplitude of the displacement. This is 

because the column is in neutral equilibrium at EP  and will be in equilibrium at any 

displacement amount. 
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Other Buckling Modes 

In general we can see that the column can buckle in the shapes: 

 

n 0 1 2 3 … 

Critical 

Load 

crP =  
Infinite 

2

2E

EIP
L

π
=  

2

2

4 EI
L
π  

2

2

9 EI
L
π  

2 2

2

n EI
L
π  

Mode 

Shape 
y =  

0 siny B x
L
π

=
2sinB x
L
π  3sinB x

L
π  sin nB x

L
π  

Plot 
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However, to achieve these other buckling loads, the lower modes must be prevented 

from occurring by lateral restraints: 
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Critical Stress 

For design, we are interested in the stress that the material undergoes at the time of 

buckling – the critical stress, crσ : 

 

 
2

2
E

cr

P EI
A L A

πσ = =  (13) 

 

Looking at the factor I A , we see that it is a property of the shape of the cross 

section, and is in units of [ ] [ ] [ ]4 2 2length length length= . Therefore, we define a new 

geometric property, r, called the Radius of Gyration as: 

 

 Ir
A

=  (14) 

 

And so r has units of length. The radius of gyration can be thought of as a distance 

from the centroid at which the area of the cross section is concentrated for calculating 

the second moment of area, I, since by (14), 

 

 2I Ar=  (15) 

 

The critical stress can now be expressed as: 

 

 
2 2

2cr

Er
L

πσ =  

 

And we can see that the dimensional properties of the column are summed up by the 

factor 2 2r L , which represents a ratio of r to L. Thus we define the Slenderness 

Ratio, λ , as: 
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 L
r

λ =  (16) 

 

Finally then, we have the equation for critical stress as: 

 

 
2

2cr

Eπσ
λ

=  (17) 

 

A plot of the critical stress against slenderness is called a strut curve and looks like: 
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As can be seen, at low slendernesses (that is short stocky columns), the critical stress 

(to cause bucking) reaches very high values. Since the maximum stress in the 

material is the yield stress, me must cap the curve at yσ . 

 

Finally, notice that typical experimental results fall below the Euler strut curve. This 

is because the theory examined so far is for perfectly straight columns that have 

somehow begun to buckle. In real columns there will be some initial imperfections 

which have the effect of reducing the strength of the column. These initial 

imperfections can be represented by an initial displacement curve. 
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2.3 Column with Initial Displacements 

Problem Formulation 

The imperfections in the manufacture of real columns mean that an initial 

displacement curve exists in the column, prior to loading. Since any curve can be 

represented by a Fourier series expansion, we will approximate the initial displaced 

shape by the first term of a Fourier series – a sine curve, the equation of which is: 

 

 ( )0 sin xy x a
L
π

=  (18) 

 

where, at the midpoint of the column, the initial displacement is a. 
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Considering a free-body diagram as before: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

gives the equilibrium equation as: 

 

 ( )
2

02 0d yEI P y y
dx

+ + =  

Thus we have: 

 

 
2

02
0d y P Py y

dx EI EI
+ + =  

 

Using equation (2) gives: 
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2

2 2
02 0d y k y k y

dx
+ + =  

 

And so using equation (18) we have 

 

 
2

2 2
2

sind y xk y k a
dx L

π
+ = −  (19) 

 

This is a non-homogenous second order differential equation. 
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Solution 

The solution to non-homogenous differential equations is made up of two parts: 

• The complimentary solution (denoted Cy ): this is the solution to the 

corresponding homogenous equation. That is, the solution when the right hand 

side is zero. We have this from before as equation (4): 

 

 cos sinCy A kx B kx= +  (20) 

 

• The particular solution (denoted Py ): for the function on the right hand side, 

the solution is verified in the Appendix as: 

 

 

2

2
2

2

2
2

2

sin

sin

P

k a xy
L

k
L

k a x
Lk

L

π
π

π
π

−
=

⎛ ⎞− +⎜ ⎟
⎝ ⎠

=
−

 (21) 

 

Thus the total solution is: 

 

 
2

2
2

2

cos sin sin

C Py y y
k a xA kx B kx

Lk
L

π
π

= +

= + +
−

 (22) 

 

To find the constants, we know that for the pinned-pinned column, 0y =  at 0x = : 
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( ) ( ) ( ) ( )

2

2
2

2

0 cos 0 sin 0 sin 0

0

k ay A k B k
Lk

L
A

π
π

= + +
−

=

 

 

Also, 0y =  at x L= , giving: 

 

 
( ) ( ) ( )

2

2
2

2

sin sin

0 sin

k ay L B k L L
Lk

L
B kL

π
π

= +
−

=

 

 

Although this is the same equation as found for the perfectly straight column, we 

must consider the implications. If 0B ≠  then sin 0kL =  and so kL π=  as before. This 

yields k Lπ= , or 22 2k Lπ= . Substituting this into equation (22) means that the 

third term is infinite and so the deflection is infinite. Since this is impossible for a 

stable column with crP P< , we conclude that 0B =  and we are left with: 

 

 
2

2
2

2

sink a xy
Lk

L

π
π

=
−

 (23) 

 

This equation represents the deflections of the column caused by the loading. The 

total deflection will be that caused by the loading, in addition to the initial 

imperfection deflection curve: 

 

 0toty y y= +  

 

And so: 
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2

2
2

2

sin sintot

k x xy a a
L Lk

L

π π
π

= +
−

  

 

Solving out, and dropping the tot subscript on y gives:: 

 

 
2

2 2 2 1 sink xy a
L k L

π
π
⎛ ⎞

= +⎜ ⎟−⎝ ⎠
  

 

And so: 

 

 
2 2

2 2 2
sinL xy a

L k L
π π

π
⎛ ⎞

= ⎜ ⎟−⎝ ⎠
 (24) 

 

Now, using the expression for EP  (equation (11)), we have: 

 

 
2

2
EP

L EI
π

=  

 

And with the expression for 2k  (equation (2)), equation (24) becomes: 

 

 sinE

E

P EI xy a
P EI P EI L

π
=

−
 

 

And so we have: 

 

 sinE

E

P xy a
P P L

π⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 (25) 
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The term in brackets thus amplifies the initial deflection, depending on how close we 

are to the critical buckling load. A plot of load against deflection shows: 
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Maximum Stress Consideration 

At the mid-height of the column, the deflection will be largest, and thus so will the 

bending moment. The deflection at the mid-height is got from equation (25), with 

2x L= : 

 

 
sin

2 2
E

E

E

E

L P Ly a
P P L

P a
P P

π⎡ ⎤⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟⎢ ⎥−⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤

= ⎢ ⎥−⎣ ⎦

 

 

We can equally interpret this equation in terms of stresses by dividing each of the Ps 

by A: 

 

 
2

E

E

Ly aσ
σ σ
⎡ ⎤⎛ ⎞ =⎜ ⎟ ⎢ ⎥−⎝ ⎠ ⎣ ⎦

 (26) 

 

where Eσ  is the stress associated with the critical Euler load (equation (13)). 

 

Consider again the free-body diagram of the column from mid-height to pin. There 

are two sources of stress: 

 

1. The stresses due to the moment alone are: 

 

 Moment

Mz
I

σ =  

 

where z is the distance from the neutral axis of the fibre under consideration. 
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2. The stresses due to the axial force are: 

 

 Axial

P
A

σ =  

 

Thus the stresses at any point are given by: 

 

 P Mz
A I

σ = +  (27) 

 

Superposition of the stress diagrams shows this: 

 

 

 

 

 

 

 

 

 

 

 

 

The maximum stress is on the outside face and is thus: 

 

 max

P Mc
A I

σ = +  (28) 

 

where c is the distance from the neutral axis to the inside face of the column. 
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Next, into equation (28), we introduce the relevant properties of equation (15) and the 

fact that ( )2M Py L=  yields: 

 

 ( )
max 2

2Pcy L
Ar

σ σ= +  

 

But, from equation (26) we know the displacement at mid height, ( )2y L : 

 

 max 2
E

E

Pc a
Ar

σσ σ
σ σ
⎡ ⎤

= + ⎢ ⎥−⎣ ⎦
 

 

At failure the maximum stress is the yield stress, yσ . The stress associated with the 

load P when this occurs is crσ . Hence the governing equation becomes: 

 

 
2

E
y cr cr

E cr

c a
r

σσ σ σ
σ σ
⎡ ⎤

= + ⎢ ⎥−⎣ ⎦
  

 

Giving: 

 

 
2

1 E
y cr

E cr

ac
r

σσ σ
σ σ

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟−⎝ ⎠⎣ ⎦

 (29) 

 

We are looking to find the value of crσ  that solves this equation. At the load 

corresponding to crσ  failure occurs. As can be seen, this failure stress is a function of 

the section (through r and c) and the initial imperfection, a, as well as the usual Euler 

buckling load for the column (through Eσ ). 
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Critical Stress for Buckling 

To solve equation (29) for crσ  we proceed as follows: 

 

 

( ) ( )

( ) ( )

2

2 2

2 2 2 2

2 2 2 2

2 2 2 2 2

2
2

1

0

0

E
y cr

E cr

y E cr cr E cr cr E

y E y cr cr E cr cr cr E

y E y cr cr E cr cr cr E

cr cr y E E y E

cr cr y E E

ac
r

r r ac

r r r r ac

r r r r ac

r r r ac r

ac
r

σσ σ
σ σ

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ

σ σ σ σ σ

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟−⎝ ⎠⎣ ⎦

− = − +

− = − +

− − + − =

+ − − − + =

⎛+ − − −⎜
⎝

0y Eσ σ⎞ + =⎟
⎠

 

 

We call the parameter that accounts for the initial imperfections called the Perry 

Factor: 

 

 
2

ac
r

η =  (30) 

 

And this gives: 

 

 ( )2 1 0cr cr y E y Eσ σ σ σ η σ σ⎡ ⎤+ − − + + =⎣ ⎦  (31) 

 

This is a quadratic equation in crσ  and so is solved by the usual: 

 

 
2 4

2
b b acx

a
− ± −

=  

 

where: 
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 ( )
1

1y E

y E

a

b

c

σ σ η

σ σ

=

⎡ ⎤= − − +⎣ ⎦
=

 

 

And this gives: 

 

 ( ) ( )
0.52

1 1
2 2

y E y E
cr y E

σ σ η σ σ η
σ σ σ

⎧ ⎫+ + + +⎡ ⎤⎪ ⎪= − −⎨ ⎬⎢ ⎥
⎣ ⎦⎪ ⎪⎩ ⎭

 (32) 

 

Notice that we have chosen the lower root of the two possible solutions. 

 

Equation (32) is called the Perry-Robertson formula and it gives the buckling stress 

in terms of the yield stress and initial imperfections of the column, as well as its Euler 

buckling load.  

 

It is useful to introduce the following: 

 

 
( )1

2
y Eσ σ η

φ
+ +

=  (33) 

 

And so the Perry-Robertson formula (equation (32)) becomes: 

 

 2
cr y Eσ φ φ σ σ= − −  (34) 

 



Structural Mechanics 

Dr. C. Caprani 30

2.4 The Effective Length of Columns 

So far we have only considered pinned-end columns but clearly other end conditions 

are possible. Analysis of the buckling loads for such columns can be carried out along 

the same lines as for pinned-end columns. However, a significant advantage can be 

got by remembering that a point of contraflexure (zero moment) behaves as a pin 

(zero moment). The distance between points of contraflexure can be considered as a 

pin-pin column, but with a smaller length than the overall column. We call this length 

the effective length, EL . Analysis then proceeds as for pinned-end columns, but 

using the effective, rather than actual, length. 

 

The effective lengths of some typical columns are: 

 

Non-Sway Modes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pin-Pin Fix-Pin Fix-Fix 
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Sway Modes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fix-fix  Fix-roller  Cantilever (fix-free) 

 

Notice from the above  that the locations of the points of contraflexure do not have to 

be and can be located outside the column. That is, the column is buckling over a 

notional length of EL . 

 

The effective length only affects the slenderness and so the general case for 

slenderness is: 

 

 EL
r

λ =  (35) 
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3. Column Design 

3.1 Background to BS5950 

Initial Imperfections 

Robertson performed many tests on struts to arrive at a suitable value for the initial 

imperfections in the approach outlined in the previous section. He suggested: 

 

 0.003η λ=  (36) 

 

where λ  is the slenderness of the column, given by equation (16). More recently, the 

initial imperfection has been taken as: 

 

 
2

0.3
100
λη ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (37) 

 

The idea of linking the initial imperfections to the slenderness is intuitively appealing 

– the slimmer a column is, the more likely it is to have imperfections. 

 

The steel design code BS5950 is based on the following: 

 

 ( )0

1000
a λ λ

η
−

=  (38) 

 

In which: 

• a is the Robertson constant (and is not the same as the a we had for the 

deflection of the column previously); 

• 0λ  is called the limiting slenderness as is given by: 
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2

0 0.2
y

Eπλ
σ

=  (39) 

 

By rearranging equation (17) it can be seen that this is: 

 

 0 0.2 crλ λ=  

 

where crλ  is the slenderness at which the Euler stress reaches the yield stress of the 

material. 

 

As can be seen, the higher the value of a, the more initial imperfection is accounted 

for and the compressive strength reduces as a result. 
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Code Expressions 

In BS5950, the Perry-Robertson formula is given in a slightly different form to that 

presented in equation (34). To get the code expression, we multiply top and bottom of 

equation (34) by 2
y Eφ φ σ σ+ −  to get: 

 

 
2 2

2

y E y E

cr

y E

φ φ σ σ φ φ σ σ
σ

φ φ σ σ

⎡ ⎤ ⎡ ⎤− − + −⎣ ⎦ ⎣ ⎦=
+ −

  

 

And multiplying out gives: 

 

 

2 2

2

2

y E
cr

y E

y E

y E

φ φ σ σ
σ

φ φ σ σ

σ σ

φ φ σ σ

− +
=

+ −

=
+ −

  

 

Lastly, to get the code expression, we must use the code notation which is: 

 

 
C cr

y y

E E

p
p
p

σ
σ

σ

≡
≡

≡

 

 

So finally we have the expression in Appendix C of BS5950: 

 

 
2

E y
c

E y

p p
p

p pφ φ
=

+ −
 (40) 
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Strut Curves 

BS5950 provides four values of the Robertson constant that may be used in design. It 

also specifies what value of a to use for the various types of steel section and the axis 

about which buckling may occur. The values are: 

 

• 2.0a =  - strut curve (a); 

• 3.5a =  - strut curve (b); 

• 5.5a =  - strut curve (c); 

• 8.0a =  - strut curve (d). 

 

Given the initial imperfection model of equation (38) as well as the Perry-Roberston 

formula, equation (40), we can plot the four strut curves used in the code: 
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Also shown in this plot are the limiting slenderness, and the critical slenderness, 

discussed in relation to equation (38). 
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The code provides four tables (Table 24(a) to 24(d)) – corresponding to the strut 

curves, which are formatted as follows: 

 

 yp  

λ  225 . . . 275 
15 
. 
. 
. 

350 

. . . . . 
 

Values of cp  from equation (40) 
 

. . . . . 
 

Table 23 of the code allocates the strut curves to different section types and axes: 
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Effective Lengths 

Table 22 of the code specifies the appropriate effective lengths for columns with 

different end conditions, end conditions that occur in practice. The meanings of the 

phrases in Table 22 are as follows: 

 

Term Diagram 

Effectively held in position, not 

restrained in direction. 

(pin) 

 

 

 

Effectively held in position, 

partially restrained in direction. 

(rotational spring) 

 

 

 

Effectively held in position and 

restrained in direction. 

(fixed) 

 

 

 

Not held in position, and 

effectively restrained in direction. 

(fixed with sway) 

 

 

 

Not held in position, partially 

restrained in direction. 

(rotational spring with sway) 

 

 

 

Not held in position or restrained 

in direction. 

(free) 
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3.2 Column Design Examples 

Example 1 

Problem 

A 5.6 m high column consists of a 203 × 203 × 46 UC section. It is supported along 

its x-axis and is pinned at both ends. Find the buckling load. 

 

Solution 

Firstly, sketch the column: 
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Since the column is supported along its x-x axis, it can only buckle about its y-y axis. 

The relevant section properties for a 203 × 203 × 46 UC are: 

 

Cross-Sectional Area 58.8 cm2 

Yield stress 275 N/mm2 

Modulus of Elasticity 205 kN/mm2 

Radius of gyration about the y-y axis 5.12 cm 

Robertson Constant for the y-y axis 5.5 

 

Thus: 

 

 5600 109.6 110
51.1

λ = = ≈  

 

From Table 23 we see that we are using strut curve (c) and so 5.5a = . Also, 
2205 kN/mmE =  and 2265 N/mmyp =  from Table 9. Thus: 

 

The limiting slenderness (equation (39)) is: 

 

 
2 2 3

0

205 100.2 0.2 17.48
265y

E
p
π πλ ⋅ ×

= = =  

 

The Perry Factor (equation (38)) is: 

 

 ( ) ( )0 5.5 110 17.48
0.509

1000 1000
a λ λ

η
− −

= = =  

 

The Euler stress (equation (17) is: 
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2 2 3

2
2 2

205 10 168 N/mm
110E

Ep π π
λ

⋅ ×
= = =  

 

The modifying stress (equation (33)) is: 

 

 ( ) ( ) 21 265 0.509 1 168
259 N/mm

2 2
y Ep pη

φ
+ + + +

= = =  

 

And so the compressive strength (equations (34)or (40)): 

 

 2

2 2

168 265 108.6 N/mm
259 259 168 265

E y
c

E y

p p
p

p pφ φ
⋅

= = =
+ − + − ⋅

 

 

Thus the buckling load is: 

 

 3

5880 108.6 640.4 kN
10g cP A p ⋅

= = =  

 

To check this, use Table 24(c), for 110λ ≥  and 2265 N/mmyp =  gives: 

2108 N/mmcp =  and so the capacity is 3108 5880 10 635 kN⋅ = , which is similar to 

the previous calculation. 
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Example 2 

Problem 

For the column of Example 1, the restraint along the x-x axis has to be removed. 

Determine the buckling capacity. 

 

Solution 

Again, sketch the column: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Structural Mechanics 

Dr. C. Caprani 42

Since the column can now buckle about both its x-x axis and y-y axis, we will need to 

determine the buckling capacity of each axis. Of course the buckling capacity about 

the y-y axis has already been determined from Example 1, so it remains to find the 

capacity about the x-x axis. The relevant section properties are: 

 

Cross-Sectional Area 58.8 cm2 

Yield stress 275 N/mm2 

Modulus of Elasticity 205 kN/mm2 

Radius of gyration about the x-x axis 8.81 cm 

Robertson Constant for the x-x axis 3.5 

 

Thus: 

 

 5600 63.6
88.1

λ = =  

 

The limiting slenderness is the same as in Example 1 since E nor yp  change: 

 

 0 17.48λ =  

 

The Perry Factor (equation (38)) is: 

 

 ( ) ( )0 3.5 63.6 17.48
0.16

1000 1000
a λ λ

η
− −

= = =  

 

The Euler stress (equation (17) is: 

 

 
2 2 3

2
2 2

205 10 500.8 N/mm
63.6E

Ep π π
λ

⋅ ×
= = =  
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The modifying stress (equation (33)) is: 

 

 ( ) ( ) 21 265 0.16 1 500.8
423.3 N/mm

2 2
y Ep pη

φ
+ + + +

= = =  

 

And so the compressive strength (equations (34)or (40)): 

 

 2

2 2

500.8 265 207.7 N/mm
423.3 423.3 500.8 265

E y
c

E y

p p
p

p pφ φ
⋅

= = =
+ − + − ⋅

 

 

Thus the load to cause buckling about the x-x axis is: 

 

 3

5880 207.7 1221.5 kN
10g cP A p ⋅

= = =  

 

Check this value using Table 24. 

 

Since the buckling capacities are: 

• x-x axis: 1221.5 kNP = ; 

• y-y axis 640.4 kNP = ; 

the column will first buckle about the y-y axis and so its overall buckling capacity is: 

 

 640.4 kNP =  
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Example 3 

Problem 

To increase the capacity of the column of Example 2, the supports in the y-y axis 

have been changed to fixed-fixed. Determine the buckling capacity. 

 

Solution 

As always, sketch the column: 
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We know the buckling capacity about the x-x axis from Example 2, but since the 

support conditions for the y-y axis have changed, the buckling capacity about the y-y 

axis changes. Again the relevant properties are: 

 

Cross-Sectional Area 58.8 cm2 

Yield stress 275 N/mm2 

Modulus of Elasticity 205 kN/mm2 

Radius of gyration about the y-y axis 5.12 cm 

Robertson Constant for the y-y axis 5.5 

 

In this case, since the restraints are fixed-fixed, the effective length is: 

 

 0.7 0.7 5600 3920 mmEL L= = ⋅ =  

 

Thus the slenderness is: 

 

 3920 76.6
51.2

λ = =  

 

The limiting slenderness is the same as before, 0 17.48λ = . The Perry Factor 

(equation (38)) is: 

 

 ( ) ( )0 5.5 76.6 17.48
0.32

1000 1000
a λ λ

η
− −

= = =  

 

The Euler stress (equation (17) is: 

 

 
2 2 3

2
2 2

205 10 345.2 N/mm
76.6E

Ep π π
λ

⋅ ×
= = =  
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The modifying stress (equation (33)) is: 

 

 ( ) ( ) 21 265 0.32 1 345.2
361.2 N/mm

2 2
y Ep pη

φ
+ + + +

= = =  

 

And so the compressive strength (equations (34)or (40)): 

 

 2

2 2

345.2 265 163.8 N/mm
361.2 361.2 345.2 265

E y
c

E y

p p
p

p pφ φ
⋅

= = =
+ − + − ⋅

 

 

Thus the load to cause buckling about the y-y axis is thus: 

 

 3

5880 163.8 962.9 kN
10g cP A p ⋅

= = =  

 

Check this value using Table 24. 

 

Since the buckling capacities are: 

• x-x axis: 1221.5 kNP =  - still as per Example 2; 

• y-y axis 962.9 kNP =  - changed due to new support conditions; 

thus, the column will first buckle about the y-y axis and so its overall buckling 

capacity is: 

 

 962.9 kNP =  

 

Notice that a change in support conditions has resulted in a nearly 50% increase in 

capacity. 
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4. Appendix 

4.1 Solutions to Differential Equations 

The Homogenous Equation 

To find the solution of: 

 

 
2

2
2 0d y k y

dx
+ =  (41) 

 

we try xy eλ=  (note that this λ  has nothing to do with slenderness but is the 

conventional mathematical notation for this problem). Thus we have: 

 

 
2

2
2;x xdy d ye e

dx dx
λ λλ λ= =  

 

Substituting this into (41) gives: 

 

 2 2 0x xe k eλ λλ + =  

 

And so we get the characteristic equation by dividing out xeλ : 

 

 2 2 0kλ + =  

 

From which: 

 

 2kλ = ± −  

 

Or, 
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 1 2;ik ikλ λ= + = −  

 

Where 1i = − . Since these are both solutions, they are both valid and the expression 

for y becomes: 

 

 1 2
ikx ikxy Ae A e−= +  (42) 

 

In which 1A  and 2A  are constants to be determined from the initial conditions of the 

problem. Introducing Euler’s equations: 

 

 cos sin
cos sin

ikx

ikx

e kx i kx
e kx i kx−

= +

= −
 (43) 

 

into (42) gives us: 

 

 ( ) ( )1 2cos sin cos siny A kx i kx A kx i kx= + + −   

 

Collecting terms: 

 

 ( ) ( )1 2 1 2cos siny A A kx iA iA kx= + + −   

 

Since the coefficients of the trigonometric functions are constants we can just write: 

 

 cos siny A kx B kx= +  (44) 

 

Which is the solution presented in equation (4). 
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Particular Solution of Non-homogenous Equation 

We seek here to show the particular solution to the problem: 

 

 
2

2
2

sind y k y A x
dx

λ+ =  (45) 

 

Is given by: 

 

 siny B xλ=  (46) 

 

From (46): 

 

 
2

2
2cos ; sindy d yB x B x

dx dx
λ λ λ λ= = −  

 

Substitution into (45) gives: 

 

 2 2sin sin sinB x k B x A xλ λ λ λ− + =  (47) 

 

Dividing out the common term: 

 

 2 2B k B Aλ− + =  (48) 

 

And so: 

 

 2 2

AB
kλ

=
− +

 (49) 

 



Structural Mechanics 

Dr. C. Caprani 50

Thus (46) becomes: 

 

 2 2 sinAy x
k

λ
λ

=
− +

 (50) 

 

Looking at equation (19), we see that: 

 

 

2A k a

L
πλ

≡ −

≡
 

 

And so the particular solution of equation (19) becomes: 

 

 
2

2
2

sink ay x
k

L

λ
π
−

=
⎛ ⎞− +⎜ ⎟
⎝ ⎠

 (51) 

 

Which is given previously as equation (21). 
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4.2 Code Extracts 
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4.3 Past Exam Questions 

Semester 1 Paper 2007/8 
(a) Briefly explain how to calculate the second moment of area of a section comprised of simple shapes. (3 marks) 
(b) Describe what is meant by complimentary shear stresses.       (4 marks) 
(c) Determine the maximum load w that can be sustained by the column BD shown in Fig. Q.4.   (18 marks) 

The relevant section properties are given in Table Q4 and the Perry-Robertson formula is given. 

 

FIG. Q4

C

w kN/m

6 
m

B

3 m

A
PINNED
CONNECTION

D

6 m

ELEVATION X-X AXIS ELEVATION Y-Y AXIS

3 
m

3 
m

B

D

 
 

Table Q4 

Relevant Section Properties for 152 × 152 × 23 UC 

Cross-Sectional Area 29.2 cm2 Radius of gyration about the x-x axis 6.54 cm 

Yield stress 275 N/mm2 Radius of gyration about the y-y axis 3.70 cm 

Modulus of Elasticity 205 kN/mm2 Robertson Constant for the x-x axis 5.5 

  Robertson Constant for the y-y axis 5.5 

 

Perry-Robertson Strut Formula: 

( ) ( )

2

2 2
0

02

1
where ; ; ; 0.2

2 1000

E y
c

E y

y E
E

y

p p
p

p p

p p aE Ep
p

φ φ

η λ λπ πφ η λ
λ

=
+ −

+ + −
= = = =

 

In which the symbols have their usual meanings. 


