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ABSTRACT 
Many bridges of the world’s highway networks have been in service for decades 

and are subject to escalating volumes of traffic. Consequently, there is a 

growing need for the rehabilitation or replacement of bridges due to 

deterioration and increased loading. The assessment of the strength of an 

existing bridge is relatively well understood, whereas the traffic loading it is 

subject to, is not as well understood. Accurate assessment of the loading to 

which bridges may be subject, can result in significant savings for highway 

maintenance budgets internationally. In recent years, a general approach has 

emerged in the research literature: the characteristics of the traffic at a site are 

measured and used to investigate the load effects to which the bridge may be 

subject in its remaining lifetime. 

This research has the broad objective of developing better methods of statistical 

analysis of highway bridge traffic loading. The work focuses on short- to 

medium-length (approximately 15 to 50 m), single- or two-span bridges with 

two opposing lanes of traffic. Dynamic interaction of the trucks on the bridge is 

generally not included.  

Intuitively, it can be accepted that the gap between successive trucks has 

important implications for the amount of load that may be applied to any given 

bridge length. This work describes, in quantitative terms, the implications for 

various bridge lengths and load effects. A new method of modelling headway for 

this critical time-frame is presented. 

When daily maximum load effects (for example) are considered as the basis for 

an extreme value statistical analysis of the simulation results, it is shown that 

although this data is independent, it is not identically distributed. Physically, 
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this is manifest as the difference in load effect between 2- and 3-truck crossing 

events. A method termed composite distribution statistics is presented which 

accounts for the different distributions of load effect caused by different event 

types. Exact equations are derived, as well as asymptotic expressions which 

facilitate the application of the method. 

Due to sampling variability, the estimate of lifetime load effect varies for each 

sample of load effect taken. In this work, the method of predictive likelihood is 

used to calculate the variability of the predicted extreme for a given sample. In 

this manner, sources of uncertainty can be taken into account and the resulting 

lifetime load effect is shown to be calculated with reasonable assurance. 

To calculate the total lifetime load effect (static load effect plus that due to 

dynamic interaction), the results of dynamic simulations based on 10-years of 

static results are used in a multivariate extreme value analysis. This form of 

analysis allows for the inherent correlation between the total and static load 

effect that results from loading events. A distribution of dynamic amplification 

factor and estimates for a site dynamic allowance factor are made using 

parametric bootstrapping techniques. It is shown that the influence of dynamic 

interaction decreases with increasing static load effect. 
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Chapter 1 - INTRODUCTION 

1.1 Background 

The developed economies of the world have, as a prerequisite, a transport 

infrastructure that is efficient in the movement of goods and people. In such 

economies, the highway transport infrastructure was, in many cases, built in the 

decades following World War II. Hence, the bridges built for these highway 

networks have been in existence for a significant proportion of their design 

lifetime. Deterioration of these older bridges has been found in many countries; 

yet with economic growth, their importance has increased, as has the cost of 

their replacement or refurbishment. 

Throughout the last century, as scientific knowledge broadened, more accurate 

standards for highway bridge design developed. Indeed the in-situ strength of 

bridges is now well understood relative to the in-situ loads to which bridges are 

subject. The highway bridge load models in bridge design codes are 

consequently quite conservative. Whilst acceptable for the majority of new 

bridges, where the cost of providing additional strength is minimal, the loading 

standards are conservative when applied to bridges in operation. In the past, 

when bridges were fewer in number, more lightly trafficked, and cheaper to 

repair or replace, the overall economic cost of conservative loading codes was 

small. Today, the rehabilitation of existing bridges to conservative code load 

requirements is therefore known to be an area in which savings can be made. 

The factors just outlined have combined in recent years to significantly increase 

the value of accurate assessment of the loads to which a bridge may be subject. 

A general solution of the problem is emerging in which the characteristics of the 
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traffic at a given site are measured and used to investigate the load effects to 

which the bridge may be subject in its remaining lifetime. 

Static weigh-station sites, typical of those used in law enforcement efforts, are 

known to produce biased measurements of traffic, due to the avoidance of 

grossly overloaded vehicles. Lately, unbiased measurement of real traffic is 

obtained by Weigh-In-Motion (WIM) systems. These systems have 

acknowledged measurement inaccuracies but produce unbiased data because the 

installations are not readily visible to traffic. 

Even with modern WIM systems, the quantity of traffic data is usually limited: 

such data is generally expensive to obtain and measurement periods are 

consequently limited. To extend the amount of traffic data, synthetic traffic 

data can be generated, based upon the measured traffic characteristics, through 

the use of Monte-Carlo simulation. Such extended traffic records are then used 

for estimation of rare extreme load effects which may result from the traffic at 

the measurement site in the bridge lifetime. Even with this form of simulation, 

it is necessary to have some form of statistical extrapolation technique, based on 

the load effect history, to estimate a lifetime value of load effect. 
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1.2 Objectives and Scope 

1.2.1 Objectives 

The research described in this exposition has the broad objective of critically 

examining the statistical analysis of highway bridge traffic loading. It had been 

recognized that the contemporary literature on the subject included areas of 

subjectivity that can affect the results of an analysis. Thus the main thesis of 

this work is to further the level of knowledge regarding the calculation of the 

bridge loading that may be expected to occur with an acceptably low level of 

probability in the remaining lifetime of the bridge. 

More specifically, with reference to previous work in the area, the objectives are: 

1. to maximize the information gained from a limited amount of measured 

traffic data; 

2. to develop appropriate software tools to produce robust information for 

further analysis; 

3. to improve the statistical analyses performed on load effect histories such 

that robust and realistic estimates of lifetime maximum load effect are 

determined; 

4. to introduce further statistical techniques through which introduced 

inaccuracies may be accounted for in the lifetime maximum load effect 

estimate. 

1.2.2 Scope of work 

This work focuses on short- to medium-length bridges (approximately 15 to 50 

m) of two opposing lanes of traffic. While it is acknowledged that congested 

traffic may govern for bridges in the upper part of this length range, only free-

flowing traffic is considered in this work. Vehicles of Gross Vehicle Weight 
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(GVW) greater than 3.5 tonnes are considered: lighter vehicles do not 

contribute significantly to the loading to which a bridge is subject, but their role 

in the spatial arrangement of traffic is acknowledged. Dynamic interaction of 

the trucks on the bridge is generally not considered. Only single and two-span 

bridges are examined and the load effects are limited to bending moment, shear 

force, stress and/or strain as appropriate to the problem under study. 
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1.3 Outline of the Research 

1.3.1 Traffic modelling and simulation 

The research presented herein is heavily reliant on the software tools developed 

as part of this work. The efficacy and power of the software has implications for 

the manner in which bridge load research is carried out: for example, larger 

sample sizes generally result in more accurate load effect prediction. 

Accordingly, in this work, the object-orientated approach to programming is 

used. An explanation of this method, and the programs based upon it, is given 

in Chapter 4. As a result of these developments, it is now possible to simulate 5 

years of traffic for a typical heavily trafficked European trunk motorway on a 

typical high-specification desktop personal computer. This traffic may be used 

to assess load effects from any form of influence line or slices of an influence 

surface. The statistical analysis outlined later may then be applied to the 

complex of results gathered. 

1.3.2 Headway modelling 

Intuitively, the gap between successive trucks has important implications for the 

quantity of load that may be applied to a bridge: this work describes, in 

quantitative terms, the implications for various lengths and load effects. It is 

found that existing headway (gap plus the lead truck length) models do not 

focus on the small headways that are critical for bridge loading events. A new 

method of modelling headway for this critical range is presented: it exhibits less 

variability in load effect estimation; conforms to the physical requirements of 

traffic; and preserves measured headway distributions. This method is described 

in Chapter 5, along with comparisons to existing methods. 
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1.3.3 Composite distribution statistics 

The load effect output from the process of measurement, modelling, and traffic 

simulation, requires a statistical analysis to permit estimations of future load 

effect values. Extreme value analysis assumes that the data to be analysed is 

independent (or, at most, has minor dependence) and identically distributed. 

When daily maxima (for example) are considered as the basis for further 

statistical analysis, it is shown here that although this data is independent, it is 

not identically distributed. Physically, this is manifest as the difference in load 

effect between 2- and 3-truck crossing events, for example. Intuitively, such 

events are not identically distributed, and as such, should not be mixed as a 

single distribution in an extreme value statistical analysis. A method termed 

composite distribution statistics is presented which accounts for the different 

distributions of load effect caused by different event types. Exact equations are 

derived, as well as asymptotic expressions which facilitate the application of the 

method. The method is checked against results derived from the exact 

distribution, and compares favourably. Also, the method is applied to the 

output from the simulation process and compared with the traditional approach. 

It is shown that the composite distribution statistics method can give 

significantly different results. 

1.3.4 Prediction of extreme load effects 

The raison d’être of the bridge loading model, and subsequent statistical 

analysis, is the prediction of extreme, or maximum lifetime, load effects. Basic 

prediction techniques are outlined in Chapter 3, but more advanced methods 

are required to reflect the complexity of the underlying process and its model, 

such as the method of composite distribution statistics developed as part of this 

work. Such extrapolation methods, are subject to substantial variability: 
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different samples give different estimates of lifetime load effect. To allow for this 

variability, the method of predictive likelihood is used in this work. This is a 

relatively new area of Frequentist statistics and is not yet adopted in many 

practical fields of research. Predictive likelihood yields many benefits for the 

bridge loading problem. Most importantly, the variability of the predicted 

extreme can be calculated. Further, sources of uncertainty, such as the random 

variation of the data and of the parameter fits to the data, can be taken into 

account. Therefore the result of a predictive likelihood analysis gives a measure 

of the uncertainty inherent in the bridge loading problem, and enables this 

uncertainty to be taken into account. 

1.3.5 Multivariate extreme value analysis 

The full spectrum of bridge traffic load modelling must account for the effect of 

dynamic interaction between the traffic and the bridge during crossing events. 

The modelling and simulation described in this work are strictly static analyses. 

To allow for the effects of dynamics at the return period of bridge loading, 10 

years of traffic were simulated for a bridge which has been tested and modelled 

extensively by other authors. These results are used as a basis for dynamic 

models of crossing events. Both of these data sets form the basis of a 

multivariate extreme value analysis which allows for the correlation between the 

static and dynamic aspects of a crossing event. Using re-sampling techniques, 

estimates for a site dynamic allowance factor are made. It is shown that, while 

dynamic amplification may be large (around 30%) for some individual events, 

the allowance that should be made for dynamics to obtain an appropriate 

overall lifetime load effect value is much less (around 5%). 
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1.4 Layout of the Thesis 

The process under study is described in this chapter and illustrated in Figure 

1.1, where its integration into the chapters of this dissertation is shown. 

Measure Site Data

Bridge Traffic Load Model

Simulate Traffic

Statistical Modelling

Load Effects

Extreme Value Analysis

Prediction

Model Assumptions

Model Definition

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Key

The Bridge Traffic Lifetime Load Estimation Process

Chapter 3

Chapter 8

 

Figure 1.1: Load estimation process and chapter layout. 

Chapter 2 gives more detailed information on the background to this work by 

surveying the scientific literature in the field. The areas of particular importance 

to this project are highlighted. 

An introduction to the fundamental probability methods used in this work is 

given in Chapter 3. Particular attention is given to the areas of statistical 

analysis that are built upon in other parts of the work. 

The bridge load models used are described in Chapter 4. Measurements of real 

traffic, taken from various sites, are described along with the development of a 
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sympathetic bridge traffic load model. The final part of this chapter describes 

the implementation of the traffic model, to generate data for further analysis. 

It is shown in Chapter 5 that the headway model used is important to the types 

of event and values of load effect that result. A novel headway model is 

described, based on Headway Distributions Statistics of a particular site, termed 

HeDS. A comparison of HeDS with other headway models of the literature is 

made, and differences to existing models described 

In Chapter 6 it is shown that the existing methods of fitting and extrapolating 

load effects do not reflect the underlying statistical phenomena. A method 

termed composite distributions statistics is proposed and shown to give good 

predictions when compared to known return levels. It is applied to the bridge 

loading problem and compared to the conventional means of extrapolation. 

Chapter 7 presents the application of predictive likelihood theory to the bridge 

loading problem. It is shown that this method accounts for the variability of the 

data and parameter values in the composite distribution statistics model and a 

probabilistic assessment of future load effect is found.  

A multivariate extreme value statistical analysis is presented in Chapter 8 in 

the context of relating lifetime static to total (the combination of the static and 

dynamic components of a bridge crossing event) load effect. A dynamic factor is 

derived which relates lifetime static load effect to lifetime total load effect and  

it is shown that required dynamic allowance decreases with increasing lifetime. 

The conclusions reached by this work are presented in Chapter 9 along with 

areas in which further research may be directed. 



CHAPTER 2 – REVIEW OF THE LITERATURE 

11

Chapter 2 

REVIEW OF THE LITERATURE 

2.1 INTRODUCTION.................................................................................................12 

2.2 BRIDGE TRAFFIC LOAD ESTIMATION ...............................................................13 

2.3 HEADWAY MODELS .........................................................................................23 

2.4 DETERMINATION OF EXTREME LOAD EFFECT ..................................................29 

2.5 STATISTICAL BACKGROUND.............................................................................50 

2.6 SUMMARY........................................................................................................59 

 

“In literature as in love, we are astonished at what 
is chosen by others”    – Andre Maurois 



CHAPTER 2 – REVIEW OF THE LITERATURE 

12

Chapter 2 - REVIEW OF THE LITERATURE 

2.1 Introduction 

That the work herein attempts to improve and extend the work of other authors 

is testament to the importance to be placed upon those works. In particular, the 

work of Grave (2001) is to be noted as a basis for this research. 

Initially, existing traffic models for the purposes of bridge load estimation, 

which are based on measurements, are discussed. Headway modelling in the 

literature is then reviewed as this has been a large focus of this research. 

Following this, the statistics used thus far in the analysis of bridge loading is 

examined. Also covered are the areas of the statistical literature which are 

relevant to this work. 

It is the statistics currently used in the bridge load estimation research that is 

most relevant to this work. Indeed, the main area of progress in this research 

has been the adoption of extreme value theory for the estimation of bridge 

loads. 
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2.2 Bridge Traffic Load Estimation 

2.2.1 Background 

Of all the loads that a bridge may be subject to, traffic loading is probably the 

most difficult to predict. In the general reliability problem, traffic loading 

remains one of the most difficult variables to predict and incorporate. The 

assessment of load-carrying capacity is more readily understood and has been 

well researched (Melchers 1999, Bailey 1996). 

Bridge Code Calibration 

The development of recent bridge loading standards for the design and 

assessment of highway bridges has been predominantly based on the use of 

measured data and statistical extrapolations. Indeed, O’Connor (2001) outlines 

the development of codes such as the Ontario Highway Bridge Design Code 

(OHBDC), the Canadian Highway Bridge Design Code (CHBDC), the 

American Association of State Highway and Transportation Officials 

(AASHTO) Standard Specification for American Highway Bridges, the United 

Kingdom bridge design code, BD37/88 and the Eurocode for bridge traffic 

loading, Eurocode 1: Part 3, Traffic Actions on Bridges. All of these codes are 

calibrated for load effects that have been obtained from statistical analyses of 

the load effects that result from various forms of traffic model.  

O’Connor and Shaw (2000) and Ryall et al (2000) provide other outlines of 

highway bridge loading codes and their development. 

Weigh-In-Motion 

The advent of Weigh-In-Motion (WIM) technology (Moses 1979) allowed the 

use of measured unbiased traffic streams for bridge load modelling. Before that, 
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traffic studies involved estimating the properties of traffic or sampling the 

population though the use of static weigh stations (Agarwal and Wolkowicz 

1976), which are known to give biased results. It had been recognized (Agarwal 

and Wolkowicz 1976, Dorton and Csagoly 1977, OHBDC 1979) that 

measurement of the traffic characteristic at a site (or sites) is essential to any 

solution (O’Connor 2001). 

Since the development of WIM, unbiased statistics of traffic characteristics have 

become available and this has resulted in more accurate traffic models as may 

be seen from the following section. 

2.2.2 Simulation of traffic loading 

Crespo-Minguillón and Casas (1997) and O’Connor (2001) note that there are 

three main types of traffic models for bridge load effect, split as follows: 

• Theoretical statistical models – stochastic process theory and distributions 

representing traffic characteristics are used in statistical convolution to 

determine the distribution of traffic loads that result. O’Connor et al (2002); 

Fu and Hag-Elsafi (1995); Ghosn and Moses (1985); Ditlevsen (1994); and, 

Ditlevsen and Madsen (1994) are examples. 

• Static traffic configurations – measured (or set) traffic data is used to 

calculate the load effects that result. Variation in the traffic stream is not 

allowed, therefore the quantity of traffic used is therefore of prime 

importance. This represents a significant drawback to this approach. 

• Simulation of real traffic flow – measured traffic is used as the basis of 

statistical distributions of traffic characteristics. Monte-Carlo simulation is 
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used to generate synthetic, yet representative traffic which is then used to 

calculate load effects. In this way, unobserved traffic is allowed for. 

Theoretical statistical models are not directly relevant to this work and as such 

are not considered further (refer to Grave 2001 for further reference). Use of 

measured or static traffic configurations is only relevant to two aspects of this 

work; the calculation of load effect from a given traffic stream and the 

subsequent statistical analysis for lifetime load effect. O’Connor (2001) provides 

a literature review of those authors dealing with static configurations and their 

associated extrapolations (Cooper 1995, 1997; Nowak 1991, 1993; for example). 

It is the development of traffic models, based on measured traffic, which is 

directly relevant to this work – Grave (2001) and O’Connor (2001) provide 

thorough backgrounds on the research in this area. By basing traffic models – 

defined by statistical distributions for each of the traffic characteristics – on a 

set of measured traffic, the traffic model can be claimed to represent real traffic. 

The advantage offered by this approach is that unobserved traffic is allowed to 

occur randomly in computer simulations, whilst the overall characteristics 

remain those of the measured traffic. O’Connor (2001), Nowak (1993) and 

Crespo-Minguillón and Casas (1997) identify problems with the load effects that 

result when this process is not undertaken. 

Bailey (1996) 

Bailey (1996) develops a detailed statistical traffic load model for medium- to 

long-length bridges and allows for different types of traffic flow. The model is 

based on WIM measurements taken at various sites in Switzerland. The 

headway model used by Bailey is considered in Section 2.3.2 and Chapter 5. 
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In Bailey’s model, the traffic composition is comprised of 14 different types of 

vehicle which make up 99% of Swiss truck traffic. The observed frequency of 

each vehicle type is used in the simulations. 

Bailey considers axle groups as having a single weight, as the weight is generally 

evenly distributed between closely-spaced axles. A generalized bi-modal beta 

distribution is used to fit the observed axle group weights, shown in Figure 2.1. 

Correlation of this weight with the GVW is allowed for though generation of the 

other axle weights based on the axle group weight. Therefore random variation 

about perfect correlation (as assumed in Vrouwenvelder and Waarts, 1992) is 

allowed for. The procedure adopted for calculating axle weights is shown in 

Figure 2.2. The vehicles’ geometries are modelled by a beta distribution for each 

of the axle spacings and overhangs of each type of truck in the classification. 

The flow rates used in this study are specified, rather than being based on the 

measured flow rates. 

Figure 2.1: Axle-group weight distribution (after Bailey 1996). 
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Figure 2.2: Modelling the axle weight relationships (after Bailey 1996). 

Crespo-Minguillón and Casas (1997) 

These authors present a substantial effort to develop a general and 

comprehensive traffic model for bridge loading. The generation of traffic and the 

modelling of each of the traffic characteristics, are explained in the following 

sequence: 

1. The yearly mean daily flow is selected for the site under analysis. 

2. Calibration curves for the flow (or traffic intensity) during the day of the 

week and the hourly variation are then used (shown in Figure 2.3). 

3. A binomial decision making process is used to determine whether the 

traffic state will be jammed or free-flowing – the parameters of this 

process are not given by the authors, yet stated to be dependent on the 

hour. In this way then, the increased probability of traffic jams during 

rush hour is included. 

4. Given the state of the traffic and its intensity, the traffic density can 

then be determined from measured intensity-density curves shown in 

Figure 2.4. 
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Figure 2.3: Calibration curves for traffic intensity 

(after Crespo-Minguillón and Casas 1997). 

Figure 2.4: Intensity-density curves for traffic condition 

(after Crespo-Minguillón and Casas 1997). 

5. The traffic compositions are taken from measured WIM data at the site. 

The vehicle type, for the next vehicle arriving on the bridge, is calculated 
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using a Markov-chain method, with transition matrices based on those of 

the measured WIM data. 

6. Velocities are then allocated to each vehicle based on a normalized 

velocity function (similar to that of headway, explained next) which can 

then be related to the intensity-density graph for the current flow 

condition. 

7. Headway is assigned using the normalized headway model (Section 2.3 

and Chapter 5). Different such models are specified for different forms of 

driver behaviour, heavy and light vehicles and lanes. 

8. Weights and geometries are then allocated. Axle weights and GVW are 

allocated based on measured correlations (Table 2.1) between GVW and 

axle weights. Geometries are based on measured correlation coefficients 

for axle spacings. The GVW and axle weight distributions are defined 

numerically from measured cumulative distribution functions derived 

from the histograms of Figure 2.5. 

In running this model across a bridge, the authors allow for interaction between 

the vehicles; that is, overtaking events, and changes in speed are modelled. 

Invariability this added complexity increases the number of design decisions 

that must be made. 

Table 2.1: Correlation values between axle weights and GVW 

(after Crespo-Minguillón and Casas 1997). 
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Figure 2.5: GVW histograms for two vehicle types 

(after Crespo-Minguillón and Casas 1997). 

Grave (2001) 

Grave also develops a comprehensive traffic load model for use on short- to 

medium-length bridges. The traffic model in this research is largely based on the 

model developed by Grave. This model is therefore described in detail in 

Chapter 4. Some of the main aspects are discussed here, however. 

Most of the traffic characteristics have been modelled statistically by Grave. 

Only traffic composition percentages and flow rates are deterministic. The 

headway model used by Grave is the same as that of Crespo-Minguillón and 

Casas (1997). The number of vehicle types is more limited than that of the 

other studies mentioned here, though Grave points out that the added 

complexity is not required for the WIM data under study (Chapter 4). 

Other studies 

The study by Harman and Davenport (1979), based on a survey of Canadian 

trucks by Agarwal and Wolkowicz (1976), is one of the first papers to use 
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Monte Carlo simulation of vehicles and headways to obtain load effects for 

further statistical analysis. However, the study is quite limited: it does not 

model real traffic flow; rather, a form of importance sampling of critical loading 

events on single lanes up to 90 m long is used. The authors use a mixed normal 

distribution with three modes to fit to the gross-weight ratio – defined as a 

truck’s weight, divided by the legal weight limit – measured from several truck 

surveys. The geometries of the measured traffic and random GVWs (derived 

from the gross-weight ratio distribution) are used to generate a truck sample. 

Axle weights, as a proportion of GVW, are kept constant. Headways are 

randomly assigned based on a uniform distribution (see 2.3 for more 

information) and velocities are not required for this model. 

Vrouwenvelder and Waarts (1992) describe a study in which a simplified traffic 

model for the estimation of lane loads (not bridge load effects) is developed. The 

main statistic of use is the distribution of gross vehicle weight (GVW). Axle 

weights, as a proportion of GVW, are kept constant. Different types of flow are 

considered, and deterministic headways are used. The observed frequencies of 

many different truck configurations are used in the model. 

Other bridge loading traffic models are described but without the details being 

given, such as O’Connor (2001); Bruls et al (1996), and; Flint and Jacob (1996). 

Discussion 

Bailey (1996) uses the beta distribution for each of the traffic characteristics. 

This is a good distribution for such use: it is sufficiently flexible, and has upper 

and lower limits. It is difficult to compare this model to full site-specific models, 

as there appears to be no mechanism to incorporate hourly flow variation. 
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The model of Crespo-Minguillón and Casas (1997) is the most complex reviewed 

here. There may, however, be errors introduced through the use of numerical 

cumulative distribution functions to represent GVW histograms, for the reasons 

given in Section 2.4.4. Indeed, a substantial quantity of WIM data would be 

required to overcome these limitations. The complexity of the operations 

developed for passing the traffic across the bridge mean that subjective design 

decisions must be made, and this is a potential source of inaccuracy. 

The model described by Grave (2001) is described and criticized in Chapter 4. 

Vrouwenvelder and Waarts’s (1992) model does not claim to represent a full 

bridge load traffic model whilst that of Harman and Davenport (1979) is also 

simplistic, yet thorough for its use. 
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2.3 Headway Models 

2.3.1 Introduction 

Headway, or the distance from the front of one vehicle to the front of the next, 

is of great importance to bridge loading events. As is shown in Chapter 5, the 

types of loading events, and the values of the resulting load effects, are greatly 

influenced by the headway model adopted. Various methods of modelling the 

headway have been used by authors writing on Monte Carlo simulation for the 

analysis of the load effects induced on a bridge by the passage of trucks. Also, 

headway is of significance to the traffic engineering community. The headway 

models developed by both sets of researchers are reviewed next. 

2.3.2 Headway modelling for bridge traffic loading 

Poisson Process-Based Models 

Traffic is often seen as a Poisson process and Grave (2001) gives a review of the 

literature on this subject. As a consequence of the Poisson process, the 

Exponential Distribution is used to model headway (Grave 2001, Bailey and Bez 

1994, Bailey 1996). Often, this distribution is shifted to the right to allow for a 

minimum headway and is known as the Shifted Exponential Distribution: 

 
[ ]0

0

( ) 1 exp ( )

( 1)
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= − − −

=
−

where 
 (2.1) 

and where 0t is the minimum headway and λ is the flowrate (in trucks per 

hour). It may be seen from Figure 2.6 that this formulation gives inordinately 

high probabilities to values of headway close to the minimum allowed (Bailey 

1996). Further, the minimum headway allowed is a subjective element in the 
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process and this has been the subject of study in this research (see Chapter 5). 

However, this formulation allows for the effect of flowrate upon the distribution 

of headways: a higher flowrate requires vehicles to travel closer together. This 

relationship is known to hold until the capacity of the highway is reached when 

flow breaks down and congestion results (see Figure 2.4 and Haight, 1963). 

Figure 2.6: Headway (d plus lead truck length) PDF model (after Bailey 1996). 

Harman and Davenport (1979) recognize that the usual Poisson process 

assumptions of traffic engineering are not wholly applicable to bridges as only 

short headways (0 to 97.5 m in their study) are of interest. Based on a study by 

Goble et al (1976), they assume that the probability density function (PDF) of 

short headway is a constant equal to the average number of trucks per unit 

time. Relative to the negative exponential distribution, this is expressed as: 

 ( ) 1 e tF t tλ λ−= − ≈ (2.2) 
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where the symbols have their previous meaning. Also, Harman and Davenport 

limit the headway to be greater than 7.32 m, which allows for the front and rear 

overhangs of the truck bodies beyond the axles. 

Gamma Distribution Model 

The Gamma distribution function is an extension of the exponential distribution 

and passes through the origin – ensuring small probabilities for small headways: 

 ( , )( )
( )
k tF t

k
γΓ

=
Γ

(2.3) 

where ( , )k tγΓ is the incomplete Gamma function, and the parameters γ and k

are analogous to the scale and location parameters but have physical 

interpretations of mean recurrence rate and the kth arrival from a Poisson 

process. This distribution is used extensively in the background studies for the 

Eurocode for traffic loads on bridges (Bruls et al 1996, Flint and Jacob 1996, 

O’Connor et al 2002) and in other studies (O’Connor 2001, Getachew 2003). 

O’Connor (2001) finds that the parameters are dependent on the volume of 

flow, similar to the negative exponential distribution. His study also examines 

the effect of various periods for which the volume is obtained (be it 1, 3, 6 or 24 

hours) on the characteristic extreme derived therefrom; concluding that flow 

periods based upon 1 hour give minimum variation of the extreme on average. 

The Gamma distribution does not, in its left tail, take account of the driver 

behaviour or other factors that must feature in very small headways. Further, 

this distribution passes through the origin; a check must therefore be performed 

such that the physical limitations of the process are not infringed. Bruls et al 

(1996), Flint and Jacob (1996) and O’Connor (2001) use the Gamma 

distribution but assume a minimum gap of 5 m, representing the distance from 

the back axle of the lead truck to the front axle of the following truck. 



CHAPTER 2 – REVIEW OF THE LITERATURE 

26

Driver Behaviour Models 

Some authors have adopted headway models based on considerations of driver 

behaviour. Buckland et al (1980) proposed a simple method of calculating the 

headway based upon speed and a minimum distance: 

 1.5 ( )
16
vh L m= + ⋅ (2.4) 

where v is the velocity (km/hr) and L is the truck length (m). It must be 

recognized that their study is confined to long-span bridges, but their model is 

worthy of consideration nonetheless. Such a model only accounts for flow 

indirectly though the velocity, does not account for driver behaviour, and has 

no facility for site-specific modelling.  

The study by Vrouwenvelder and Waarts (1993) uses different headway models 

for different traffic conditions. They assume that, in free flowing conditions, the 

headway randomly lies in the range: 

 30 ( )L h L m≤ ≤ − (2.5) 

where the symbols have their previous meanings. Following a similar approach, 

for lengths up to 60 m, Nowak considers that gaps (headway minus the length 

of the lead vehicle) may be 4.5 or 9 m (Nowak at al 1991); may be 5 m 

conservatively, that is, bumper-to-bumper traffic (Nowak 1994); or, can vary 

between 5 and 30 m (Nowak 1993). These models may be reasonably realistic in 

terms of their acknowledgment of driver behaviour, but allow no facility for site-

specific modelling and are subjective. Furthermore, there is no facility for 

modelling long headways which have an effect on the occurrence of trucks in 

another lane. 
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Normalized Headway Model 

It is important to recognize that different headway distributions result from 

different truck flows – Figure 2.7(a) – and this has been noted in the literature 

(Bailey 1996, Crespo-Minguillón and Casas 1997, Grave 2001). Rather than 

fitting individual distributions for each flow, Crespo-Minguillón and Casas note 

that a single distribution resulted from consideration of a ‘normalized headway’, 

defined as the vehicles’ headway divided by the average headway for a given 

flowrate – Figure 2.7(b). This distribution may be subsequently altered for the 

particular flow of the period of interest and where γ is the mean normalized 

headway and Q is the flow (trucks/hour), is: 

 ( ) 1 e
3600

tQF t γ− = −  (2.6) 

(a) (b) 

Figure 2.7: (a) Different headway distributions and, (b) Normalized headway 

variable, for different flows (after Crespo-Minguillón and Casas 1997). 

For the sites mainly used in this study, Grave (2001) shows that, for the same 

flowrate, the distribution of headways is very similar. Further, Grave shows the 

effect of flowrate upon the headway distribution for the same sites and that in 

using the normalized headway distribution it is necessary to perform checks on 

the resulting trucks so that they do not overlap or come within 5 m. 
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2.3.3 Headways in traffic engineering 

The traffic engineering community has been studying the headway of vehicles 

for many years (Haight 1963, Banks 2003). The general models are as described 

above, along with other more complex models which allow mixing of constrained 

and free flowing traffic (Grave 2001, Anon. 2003). Thamizh-Arasan and Koshy 

(2003), acknowledge that different flows and different traffic types follow 

different headway patterns. Also, at low flow rates, interaction between vehicles 

takes place at longer headways than at higher flow rates (Gazis 1974). Banks 

(2003) notes that drivers’ different expectations of the traffic they are to face 

results in different headway distributions: in morning peak traffic there was no 

evident relationship between headway and speed, for speeds under 100 km/hr.  

Many authors (Lieberman and Rathi 1992, Jensen 2003, Gazis 1974, HRB 1965) 

discuss the motivational aspect to the headway distribution: the ratio of drivers’ 

actual- to desired-speed, and their aggression level, will affect how closely they 

are willing to drive to the vehicle in front. These factors affect the likelihood of 

overtaking, which in turn is controlled by the vehicle’s positioning relative to 

vehicles in target lanes, further affecting the headway distribution. Drivers are 

also willing to operate at the mechanical limit of their vehicles, resulting in 

modified headways which allow for potential rapid deceleration of the driver’s 

vehicle and the vehicle in front. Specifically of interest to this work, truck 

drivers exhibit different characteristics than other drivers: good route planning, 

commercial pressures, specialised training, high route familiarity and fatigue are 

factors affecting truck drivers. Also, the mechanical performances of trucks are 

known to be different – they are less able than other vehicles on the highway to 

respond quickly. All of these factors affect the headway distribution of trucks. 
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2.4 Determination of Extreme Load Effect 

2.4.1 Introduction 

The previous sections have examined the traffic models that are used in the 

literature to estimate bridge traffic load effect. The use of such models to 

determine lifetime load effect for a bridge, invariably involves some form of 

statistical analysis. It may be seen from Chapter 1 that the main objective of 

this work is the improvement of such statistical analyses. In this section, the 

statistical methods used in the literature are examined. Attention is given to 

areas of weakness in current practice that are addressed by this research. 

The methods of statistical extrapolation used in the literature are quite varied. 

A general observation is that European authors, in recent years, are agreed on 

the adoption of some form of extreme value analysis. Conversely, American 

publications on the topic (Moses 2001, Ghosn et al 2003) are greatly influenced 

by the work of Nowak who generally uses a form of normal probability paper 

extrapolation. There are of course exceptions to these observations in both 

continents. 

The following critique of the literature is broken into two sections: those dealing 

with extreme-value methods, and those using other methods. Such a layout 

reflects the importance of the extreme-value approach (Chapter 3) in this work. 

2.4.2 General statistical methods 

Harman and Davenport (1979) 

Harman and Davenport consider single to five-truck events separately and then 

combine the results. The histograms for load effects caused by the five different 

types of loading event are shown in Figure 2.8 and may be seen to be 
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considerably different. Also shown for each type of loading event, are the 

histograms from the measured traffic configuration and from simulated traffic. 

Figure 2.8: Histograms of load effect for different loading events, (a) – (e) 

represent 1- to 5-truck events (after Harman and Davenport 1979). 

In Section 2.5.1, the method used by Harman and Davenport is explained in 

more detail, in the context of the statistical background to this work. Briefly 
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however, the statistical analysis used is as follows. Harman and Davenport note 

that each mechanism may be represented by a negative exponential function 

and fit straight lines on log-scale paper to data points from the upper tail of the 

parent histogram – the plotting position method is not described nor is the 

arbitrary cut off level for the upper tail (see Figure 2.9). These functions are 

compared with Gaussian (normal distribution) functions fitted to the whole 

distribution but especially weighted to best fit the mean. 

Figure 2.9: Extrapolation method (after Harman and Davenport 1979). 
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Nowak 

Nowak has published widely on the subject of bridge load modelling. The truck 

survey carried out by Agarwal and Wolkowicz (1976) for the bridge load model 

of the Ontario Highway Bridge Design Code (OHBDC 1979) is used as the basis 

of most of the papers surveyed here: Nowak (1989), Heywood and Nowak 

(1989), Nowak et al (1991), Nowak and Hong (1991), and Nowak (1993). A 

contemporary truck survey is compared to the OHBDC survey in Nowak 

(1994).  The OHBDC survey consists of 9250 trucks, especially selected as they 

appeared to be heavily loaded. This is assumed to correspond with a two-week 

period of traffic for a busy highway (see Nowak 1993 for example). Therefore, 

for a design lifetime of 75 years (used in most of the cited papers), the number 

of two-week periods is reported as 1500 (Nowak and Hong 1991) and 2000 

(Nowak 1993). Based on these figures, the corresponding probabilities are 

reported as an inverse standard normal deviate as z = 5.26 (Nowak and Hong 

1991) and z = 5.33 (Nowak 1993). The reason for the difference is due to the 

differing estimates of the number of weeks in the 75 year bridge lifetime. 

Single- and two-lane shear force and bending moments are calculated for the 

trucks in the survey noted, taken individually. However, in the single-lane case, 

this is only done for spans up to 30 m as it is assumed that multiple trucks 

begin to feature thereafter (Heywood and Nowak 1989, Nowak and Hong 1991), 

though in later studies, the effect of headway is studied (Nowak 1993). 

Based on the truck survey data, the results for the load effects are plotted on 

normal probability paper (see Chapter 3) for different spans. In the papers 

Nowak (1989), Heywood and Nowak (1989), Nowak (1991), and Nowak and 

Hong (1991) it appears that straight lines, superimposed on the tails of the 

distributions plotted, are used to extrapolate the load effects. This is specifically 
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stated as the case in Heywood and Nowak (1989). However, in the same paper 

it is recognized that towards the tail of the distributions, curvature is evident. 

The authors suggest that an exponential distribution may provide a reasonable 

fit in this case. In the remaining papers, Nowak (1993) and Nowak (1994), it 

appears that curved lines on normal probability paper are used to extrapolate 

for the load effects of various return periods. This can be seen in Figure 2.10, for 

example. 

Figure 2.10: Load effect extrapolation for a range of spans (after Nowak 1993). 

Nowak (1993) states that the cumulative distribution functions of load effect are 

raised to a power to obtain the mean and coefficient of variation of the 

maximum load effect – as shown in Figure 2.11. It is possible that it is this 

method that is used to extrapolate on the normal probability paper, though it is 

not explicitly stated. In a reply to a discussion about the extrapolation methods 

used in Nowak (1994), Nowak (1995) states that extrapolations based on the 

normal distribution are not used; rather, the power transform is used. 
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(a) Mean maximum moment; 

(b) Coefficient of variation; 

Figure 2.11: Estimation of lifetime mid-span maximum moment 

(after Nowak 1993). 

Eurocode Background Studies 

The background studies carried out for Eurocode 1: Part 3, Traffic loads on 

bridges (EC 1: Part 3: 1994) generated significant interest in bridge traffic load 

modelling in Europe. The important papers are described here. 

Based on measured traffic samples, Bruls et al (1996) consider and compare 

several methods of extrapolation of the basic histogram of load effect: 
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• a half-normal curve fitted to the end of the histogram; 

• a Gumbel distribution fit to the tail of the histogram; 

• Monte-Carlo simulation of artificial traffic and Gumbel extrapolation. 

Flint and Jacob (1996) consider various methods also, some of which are applied 

to the loading on the bridge, rather than the load effects resulting. The methods 

considered are: 

• a half-normal curve fitted to the end of the histogram; 

• Rice’s formula for a stationary Gaussian process; 

• Monte-Carlo simulation of artificial traffic and Gumbel extrapolation. 

This last method, in the lists for both papers, amounts to an extreme value 

approach and will be considered further in Section 2.4.3. The half-normal and 

Gumbel distribution fits to the histograms suffer from some drawbacks as 

discussed in Section 2.4.4. 

Rice’s formula has been used extensively in the literature (Flint and Jacob 1996, 

O’Connor 2001, Cremona 2001, Getachew 2003). One of the problems involves 

the choice of a threshold (see Figure 2.12), above which data will be recorded. 

Given the histogram of the recorded data (see Figure 2.13), Cremona (2001) 

develops an optimal level ( 0x ) at which to set the threshold, based on 

minimization of the Kolmogorov-Smirnov statistic (see Figure 2.14). Getachew 

(2003) and Cremona (2001) describe the method in full. For the current 

purposes, it suffices to recognize that the fits depend on the threshold, the 

optimal level calculated, and the number and width of the histogram intervals. 
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Figure 2.12: Basis for Rice’s formula (after Cremona 2001). 

Figure 2.13: Histogram of out-crossings (after Cremona 2001). 

Figure 2.14: Basis of optimal fitting (after Cremona 2001). 
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Other Studies 

Vrouwenvelder and Waarts (1993) do not attempt to estimate the load effects 

that result from their derived simplified lane load model. The extrapolations 

carried out are for truck weights and presences. Considering the truck weights 

alone, the authors use a truncated (at the lower tail) Weibull distribution on 

the upper mode of the gross vehicle weight (GVW) histogram. It is this fit that 

is used to extrapolate for the truck weight at the return period. 

Even when sampling variability is removed, as in the case of the convolution 

methods noted earlier (Section 2.2.2), authors do not agree on the extrapolation 

method. Two such studies are described next. 

Fu and Hag-Elsafi (1995) describe a probabilistic convolution method to obtain 

bending moments for single truck events. These authors obtain the distribution 

of moment for 2 years of traffic with an annual average daily truck-flow of 2000 

vehicles. This is done by raising the original distribution to the power of 

2×365×2000 = 1.46×106.

Ghosn and Moses (1985) describe a Markov-Renewel process to convolute for 

the bridge load effect distribution. The authors adopt a 0.1 (2.4 hour) daily 

maximum as their extreme data which is then fitted using a normal distribution 

on normal probability paper. The distribution thus estimated is raised to the 

power of 10×365×50 to obtain the distribution of 50-year load effect.  

Raising distributions to a power to obtain an ‘exact’ distribution of maxima is 

normally a cause for concern (Section 2.4.4), but as the authors use a 

convolution method, it may be presumed that the tail of the parent distribution 

has been calculated carefully. Therefore there should be little inaccuracy 

introduced in the distribution of maximum load effects. 
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2.4.3 Extreme value theory based methods 

Introduction 

After the simulation and modelling of loading events, a statistical analysis is 

required to estimate the lifetime load effect. Extreme value theory provides a 

theoretical and practical framework to carry out this analysis and prediction. 

The extreme value theory utilized in extrapolating data to the return period 

required is well established. However it was not until recently that these 

theories were applied to the modelling of traffic loading on bridges. Many 

authors approach the problem by identifying the maximum load effect recorded 

during a loading event or in a reference period such as a day or a week, and 

then fit these maxima to an extreme value distribution. In all cases, the fitted 

distributions are used to extrapolate to obtain an estimate of the lifetime 

maximum load effect. This approach is based on the assumption that individual 

loading events are independent and identically distributed. 

Irish-Based Literature 

To determine the characteristic deflection of the Foyle Bridge, OBrien et al 

(1995) used 8 minute periods of measurements taken for each 4-hour rush hour 

period of a day. Each day of measurement is then represented by a 48 minute 

sample. The authors then consider the daily maximum deflection as an extreme 

value population. The Gumbel distribution is used to fit the data graphically on 

Gumbel probability paper. The extrapolation for the 1000-year return period is 

based on this distribution (shown in Figure 2.15). Interestingly, the authors 

establish the variance of the predicted load effect through the use of an 

empirical formula (Goda 1992). 
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Figure 2.15: Gumbel extrapolation for the Foyle Bridge  

(after OBrien et al 1995). 

Grave et al (2000) describe the population of extreme values as the load effects 

caused by the ‘critical’ loading events, though critical is not qualified. A 

weighted least-squares approach is used to fit Weibull distributions to these 

critical load effects. This process is repeated to give an estimate of the 

distribution of characteristics values, though this distribution is not given. It is 

possible that the critical events are determined in a manner similar to that of 

Grave (2001). In this work, the 100 worst load effects noted during a 5-day 

simulation period are assumed to form an extreme value population. The data is 

plotted on Gumbel probability paper and straight lines are fitted. Such 

distributions form the basis for the extrapolation. The author uses the upper 

2√n data points as recommended by Castillo (1988) for data that may not be 

convergent to an extreme value population. 

In the simulations carried out as part of his work, O’Connor (2001) fits Gumbel 

and Weibull distributions to a population of ‘extreme’ load effects. The author 

does not specify the manner in which the ‘extremes’ are determined. Maximum 

likelihood fitting is carried out on a censored population. O’Connor (2001) 
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censors for the upper √n, 2√n and 3√n data points (Castillo 1988), and notes 

that different estimates of lifetime load effect result from different censoring. 

In OBrien et al (2003), hourly maximum strain values are plotted on Gumbel 

probability paper. A least-squares, straight-line, fit is made to the upper 2√n

data points similar to O’Connor (2001) and Grave (2001). Also, González et al 

(2003) use the Gumbel and Weibull distributions to extrapolate bridge load 

effect. The population upon which the distributions are fit is not described.  

Getachew and OBrien (2005) fit the Generalized Extreme Value (GEV) 

distribution (Chapter 3) to the distribution of load effects from a number of 

simulated 2-truck meeting events representing two weeks of traffic. The fitting 

method is not identified, but is compared with histograms of load effect. 

Bailey 

Bailey has published widely on the estimation of traffic load on bridges. Most of 

the publications are based on his doctoral dissertation (Bailey 1996). The 

general approach is to use traffic models to derive load effects which are then 

statistically analysed. Bailey (1996) describes the use of plots of the mean and 

standard deviation of the load effects, as they change with the number of 

loading events, to estimate the appropriate extreme value distribution. Based on 

Bailey (1996), Bailey and Bez (1994 and 1999) describe a qualitative analysis of 

500 simulated upper tails of mean maximum load effects plotted against the 

number of events contributing (see Figure 2.16). They determine that the 

Weibull distribution is most appropriate to model these tails and used 

maximum likelihood estimation. They report that the Fréchet distribution has 

been used by other authors and that, in comparison to the Weibull distribution, 

this approach leads to an overestimation of the load effects. 
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Figure 2.16: Mean maximum moment from N load events (after Bailey 1996). 

Distributions are determined from the tail of the load effect histograms (though 

the tail region is not specified) by using fits based on a nonlinear least-squares 

technique – the Levenberg-Marqhuart method, described in Press et al (1993). 

Minimization of the chi-square statistic is used as the basis of the fit. The 

distributions thus determined are then raised to a power, as appropriate, to 

determine the distribution of maximum load effect (Bailey 1996, Bailey and Bez 

1994, Bailey and Bez 1999) for a given number of loading events. Bailey and 

Bez (1994) also describe a weighted sum technique to allow for different traffic 

conditions. 

Bailey and Bez (1999) and Bailey (1996) provide a parametric study of the 

parameters of the load effect distributions for many simulations. The results are 

used to express the parameters in terms of the traffic characteristics at the site. 
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Cooper 

Cooper has published widely on the bridge loading problem as it relates to the 

United Kingdom. In Cooper (1995), a traffic model of about 81 000 measured 

truck events, which represents one year of traffic, is used to determine the 

distribution of load effects due to a ‘single event’. The author raises this 

distribution to powers to determine the distribution of load effect for 1, 4, 16, 

256 and 1024 such events – where 1024 events is stated to roughly correspond 

with 4.5 days of traffic. A Gumbel distribution is then fitted to this 1024-event 

distribution and used to extrapolate to a 2400 year return period. 

Figure 2.17 shows this process, and the distribution of events obtained by 

raising the initial distribution to various powers is presented. It may be seen 

that two sharp peaks are progressively amplified as the power is increased 

(resulting in two sharp peaks in the distribution of 1024-event load effect). This 

is caused by sparse data in the tail of the initial distribution, amplified by the 

large power applied. This is an important limitation of the power method, and 

is returned to in Section 2.4.4.  

In Cooper (1997), histograms of two-week traffic load effects are obtained from 

measured WIM data. The histograms are converted into cumulative distribution 

functions (CDFs), which are then raised to a power equal to the number of 

daily trucks, to give the distribution of daily maxima (Figure 2.18). The points 

of the CDF are then plotted on Gumbel paper and a straight line is fitted 

(Figure 2.19). 
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Figure 2.17: Densities and CDFs of extreme effects (after Cooper 1995). 

Figure 2.18: Individual event CDF and daily maxima CDF (after Cooper 1997). 

Figure 2.19: Daily maxima CDF fitted to Gumbel distribution  

(after Cooper 1997). 

Other Work 

Crespo-Minguillón and Casas (1997) acknowledge the uncertainties involved in 

the extrapolation techniques of their contemporary literature. The authors plot 

the CDF of monthly maximum load effect on Gumbel probability paper and 
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note that it is not linear (Figure 2.20) – the plotting position method used is 

not stated and is not that of Chapter 3. The authors then adopt a peaks-over-

threshold (POT) approach and use the Generalized Pareto Distribution (GPD) 

to model the exceedances of weekly maximum traffic effects over a certain 

threshold. The fitting method adopted is a least squares approach, minimized on 

the empirical distribution estimate. An optimal threshold is selected based on 

the overall minimum least-squares value and it is the distribution that 

corresponds to this threshold that is used as the basis for extrapolation. 

Figure 2.20: Monthly maxima plotted on Gumbel paper 

(after Crespo-Minguillón and Casas 1997). 

In Moyo et al (2002) the authors record strain measurements on a bridge. The 

daily maximum strain values are plotted on Gumbel probability paper and a 

least-squares fit is used to determine the parameters of the daily maxima 

Gumbel distribution. The authors also employ a method for deriving improved 

plotting positions taken from wind loading literature (Cook 1982). 

Buckland et al (1980) use a Gumbel distribution to fit the 3-monthly maximum 

load effects and this is then used to extrapolate to any return period. 



CHAPTER 2 – REVIEW OF THE LITERATURE 

45

Getachew (2003) uses methods similar to those of O’Connor (2001). Gumbel 

and Weibull distributions are used to fit the “extreme” data (extreme is not 

qualified), and the results compared. The method given by Cremona (2001) is 

also used by Getachew (2003). 

2.4.4 Discussion 

It is clear that there are varying degrees of subjectivity in the literature. It does 

not induce confidence in the estimated lifetime load effect, when it is known 

that different decisions yield different results. It is one of the main objectives of 

this research to eliminate such subjective decisions in the statistical analysis of 

load effect data. It must also be recognized however, that subjectivity 

sometimes forms an essential part of any engineering solution to a problem, and 

Bardsley (1994) argues for this in the case of statistical extrapolation. 

Choice of Population 

It is important to choose a population that is in keeping with the limitations of 

the statistical model to be applied. In the works reviewed, Crespo-Minguillón 

and Casas (1997), Moyo et al (2002) and OBrien et al (1995) adhere to the 

recommendations of Gumbel (1958) for example. In these works, the form of the 

parent distribution is not established, and an extreme value distribution is fitted 

to the (presumed) population of maxima. Other authors surveyed describe an 

undefined ‘extreme’ population (O’Connor 2001, González et al 2003, Grave 

2001, Grave et al 2000, and Getachew 2003) which may or may not meet the 

requirements of the theory. OBrien et al (2003) use the hourly maximum, whilst 

Ghosn and Moses (1985) use 2.4 hourly maxima, to form the extreme 

population. In the light of the hourly variation of traffic this does not meet the 

requirements of the extreme value theory; the initial population cannot be 

considered as identically distributed. 
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Other authors surveyed do not adopt the asymptotic extreme value theory and 

estimate the initial, or parent, distribution. They then estimate the theoretical 

exact distribution of maxima (Chapter 3) by raising the parent distribution to 

an appropriate power. Such authors include: Bailey (1996); Bailey and Bez 

(1994 and 1999); Cooper (1995 and 1997), and; Getachew and OBrien (2005). 

The data upon which Nowak’s and Harman and Davenport’s result are based, 

represents a biased survey of trucks from 1976 and both sets of authors 

correctly identify this as a source of significant uncertainty (see, for example, 

Nowak 1993). 

Distribution of Extreme Load Effects 

Those authors that chose a sample of extreme values are faced with the problem 

of choosing a form of extreme value distribution. It is generally not 

acknowledged that, through use of the GEV distribution, such a decision is not 

required. Though Getachew and OBrien (2005) do use the GEV distribution, 

they use it to model the parent distribution of load effect, and not as an 

asymptotic approximation to the distribution extreme values. Therefore, the 

authors surveyed have introduced possible error by the adoption of different 

forms of extreme value distribution. It is recognized however (Bailey 1996, 

O’Connor 2001, for example), that traffic load effects normally exhibit Weibull-

type behaviour and the authors that use this model are probably more accurate. 

This is not the general case however. 

Other authors surveyed attempted to calculate the exact distribution of extreme 

load effect, based on a fit to the parent distribution (Bailey 1996; Bailey and 

Bez 1994 and 1999; Cooper 1995 and 1997; Getachew and OBrien 2005; Ghosn 

and Moses 1985; Nowak and Hong 1991; Nowak 1993). This is done by raising 

the initial distribution to an appropriate power. It is to be noted that Getachew 
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and OBrien (2005) do not do this but estimate the characteristic value directly 

from the parent distribution. The procedure followed by these authors is 

problematic in the light of the arguments of Coles (2001b) and Castillo (1988) 

which state that fitting parent distributions and raising them to a power to 

obtain an ‘exact’ distribution of maxima is inaccurate in most situations. This is 

so because the extreme tail may be of different form to the overall parent and 

consequent tail-fitting errors are raised to the same power. Therefore the 

resulting distribution may be significantly erroneous. Such problems can be seen 

in the work by Cooper (1995), reproduced in Figure 2.17. In this figure, it can 

be seen that a slight undulation in the 1-event distribution tail (more clearly 

observable in the tail of the 16-event PDF) becomes two sharp peaks in the 

distribution of the 1024-event load effect. Sparsity of data in the tail of the 

initial distribution (by definition) is the cause of this. Indeed, Cooper avoided 

compounding this error by raising the original distributions to a power, rather 

than using fitted distributions. 

Nowak and Hong (1991) and Nowak (1993) also raise the distributions to the 

power of the number of repetitions of the survey: 1500 and 2000 respectively 

even though both studies are based on the same data and are estimating load 

effects for the same return period (75 years). 

Estimation 

The methods used in the examined literature to estimate, or fit, the parameters 

of the chosen distribution(s) to the data, are considerably varied. This is 

surprising as the statistical literature recognizes that the method of maximum 

likelihood gives minimum-variance estimates in general (Chapter 3). Only 

O’Connor (2001) appears to use maximum likelihood estimation. 
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Many of the authors use ‘graphical’ (but not necessarily graphed) methods to fit 

the data – that is, a vector of ( )ˆ,x y pairs representing the distribution is fitted 

to the ( ),x y� pairs representing the data. However, it is clear that data only 

provides the x-ordinates of its pairs – the y-ordinates are established through 

various plotting position formulae. Gumbel (1958) and Castillo (1988) discuss 

the choice of plotting position. Therefore, regardless of the actual fitting 

algorithm, subjectivity has been introduced. This is the case for OBrien et al 

(1995), Grave et al (2000), Grave (2001), OBrien et al (2003), Cooper (1995 and 

1997), Moyo et al (2002), and Crespo-Minguillón and Casas (1997). The fitting 

algorithms used by these authors are all based on a form of least-squares fitting. 

Some authors introduce subjectivity by basing their fits on ‘binned’ data; data 

grouped according to arbitrary (though regular once chosen) intervals of some 

value – the bin width. The application of Sturge’s Rule (Benjamin and Cornell 

1970) may reduce the effect, but it remains an area of subjectivity. Bruls et al 

(1996), Cooper (1995 and 1997), Cremona (2001), Flint and Jacob (1996), 

Getachew (2003), Getachew and OBrien (2005), O’Connor (2001), and 

Vrouwenvelder and Waarts (1993) fit distributions directly to histograms. 

Grave (2001) notes correctly that the form of distribution which results is 

greatly influenced by the number of intervals chosen, and O’Connor (2001) 

notes sensitivity of predicted extremes to the number of intervals. Further, as 

these distributions are fit to all, or a significant part, of a histogram of interest, 

the fit to the extreme values is not emphasized – by the very nature of extreme 

values. Therefore, such fits do not represent the extreme values well. Also, by 

raising such fits to a power amplifies the errors, as discussed earlier. The chi-

squared fitting used by Bailey (1996) and Bailey and Bez (1994 and 1999) also 

requires the data to be ‘binned’ and the same problems therefore apply. 
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Choice of Thresholds 

Many of the authors reviewed make decisions (and therefore introduce 

subjectivity) regarding various threshold choices. For instance, O’Connor 

(2001), Grave (2001), Grave et al (2000), OBrien et al (2003), Bailey (1996), 

and Bailey and Bez (1994 and 1999) fit the distributions to ‘tail’ data only. In 

some cases the decisions as to what constitutes tail data is not stated; in others 

the decision is based on Castillo’s suggestion (Castillo 1988). Crespo-Minguillón 

and Casas (1997) are an exception to this as their model inherently requires the 

selection of a threshold, and their choice is rationally based on the overall least-

squares value for all the thresholds considered. 

Nowak also relies on extrapolating from the tails of load effect distributions. 

The level at which the tail (upon which the extrapolation is to be based) starts 

is not stated. The normal distribution-based extrapolations of the earlier papers 

(Heywood and Nowak 1989, for example) are therefore subjective to implement. 

Summary 

It can be seen that most authors exhibit sources of error under several of the 

categories and the errors in such works are therefore compounded. This has an 

effect on the characteristic load effect estimated from such methods. Also, it is 

clear that many authors describe subjective choices in their analyses. 
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2.5 Statistical Background 

2.5.1 Composite Distribution Statistics 

Introduction 

Load effects can be the result of any number of loading events involving 

different numbers of trucks. In general, a load effect due to the passage of a 

single vehicle has a different distribution to that induced by the occurrence of 

multiple vehicles (see Figure 2.8 for example). Multiple truck presence events 

usually yield critical load effects. Normally, it is the maximum per day load 

effect that is used as the basis for the extreme value analysis which assumes 

independent and identically distributed (iid) data. Therefore, to mix load effects 

from different types of loading events violates the iid assumption used in 

extreme value analysis. 

The problem of mixing different statistical generating mechanisms in an extreme 

value analysis has been examined by previous authors in different fields and 

their work is examined in this section. 

Gumbel (1958) 

In his summary, Gumbel (1958) states that “the initial distribution […] must be 

the same for each sample”. Gumbel gives an example of the “the two sample 

problem” – a study of river discharges, where one series of floods is due to the 

melting of snow in the spring, and the other to autumnal rainfalls. Gumbel’s 

approach to the problem is described as: take the largest value of each of two 

large samples, thus forming a couple. By repetition, obtain many such couples 

and then, for each couple, take the largest value. It is the distribution of this 
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final variable that is of interest. Gumbel notes that this distribution is the 

product of the two initial distributions of largest values. 

Gumbel’s reasoning is based on the following development. The basic results of 

probability (described in Chapter 3) state that for a value x and N random 

variables, 1, , NX X… :

[ ] [ ]1
1

, ,
N

N i
i

P x X x X P x X
=

≥ ≥ = ≥∏… (2.7) 

 [ ] [ ]1
1

, ,
N

N i
i

P x X x X P x X
=

≤ ≤ = ≤∏… (2.8) 

This is so, regardless of the ‘type’ of random variable, iX . That is, it is 

irrelevant whether iX represents an extreme population or a parent population. 

Equation (2.8) is more useful, due to its relationship with the cumulative 

probability function (Chapter 3). Therefore, 

 ( ) [ ] ( )1
1

, ,
i

N

C N X
i

F x P x X x X F x
=

= ≤ ≤ =∏… (2.9) 

where ( )
iXF x represents the distribution of load effect resulting from different 

types of truck loading events, and so ( )CF ⋅ is the composite distribution of load 

effect. The load effect considered can be extreme or parent. 

Wind Speed Analysis 

The analysis of maximum wind speed is complex due to its nature. There are 

some similarities, though, with the bridge loading problem. Through study of 

the approaches taken in the wind speed literature, methods for analysing bridge 

loading can be adapted. Two of the more important papers are described next. 
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Gomes and Vickery (1978) 

The work of Gomes and Vickery (1978) provides a direct analogy between the 

wind speed and bridge loading problems. They describe the problem of 

estimating the distribution of extreme wind speeds in mixed wind climates – 

climates in which wind may be caused by extensive pressure system storms, 

thunderstorms, hurricanes or tornados. They use the Gumbel distribution 

(Chapter 3) to model the extreme wind speeds from each of the mechanisms 

that occur at a particular site, and combine, without proof, as follows (in their 

notation): 

 [ ]
1

Q

M q
q

P V v P V v
=

 ≤ = ≤ ∏ (2.10) 

where qV is the annual maximum gust speed of the qth meteorological 

phenomenon and MV is the annual maximum gust speed, regardless of the 

source. [ ]XP V v≤ is the cumulative distribution function of the variable X.

Also of importance in their paper, Gomes and Vickery consider the annual 

maximum gust speed from thunderstorms, with an unknown number of 

thunderstorms in any given year. Adapted slightly here, they derive the 

distribution of annual maximum gust speed from thunderstorms as: 

 ( ) ( ) ( )
0

n
T T NG v F v f n dn

∞

 =  ∫ (2.11) 

where ( )TF ⋅ is the parent distribution of thunderstorm gust speed and ( )Nf ⋅ is 

the probability density function of the number of thunderstorms per year, N.

Clearly a functional form of (2.11) may be difficult to obtain and include in 

(2.10). Gomes and Vickery (1978) report a study which shows that 
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approximating the distribution of N by its mean value does not result in 

significant inaccuracy. Hence (2.11) may be written as: 

 ( ) ( ) N
T TG v F v ≈   (2.12) 

where N is the mean value of N. Gumbel (1958) describes a similar formulation 

to (2.11) for the exact distribution of maxima when the sample size itself is a 

random variable. 

Cook et al (2003) 

The paper by Gomes and Vickery (1978) was considered in detail by Cook et al 

(2003) in the light of more recent developments in statistics. Of note in this 

work, is their proof of (2.10), described next. 

The authors consider two mechanisms; A and B which give values AV and BV

and in general, for a given period, a pair of events { },A BV V can occur. Thus, 

there are four possible outcomes. Representing ∅ as the null set, the events are: 

1. No events from either mechanism, { },∅ ∅ ;

2. An event from both mechanism, { },A BV V ;

3. An event from A only, { },AV ∅ ;

4. An event from B only, { }, BV∅ .

Given that the duration of the sampling period will be long enough such that an 

event from both mechanism occurs, the authors show that: 

 ˆ ˆ ˆ
A BP V v P V v P V v     ≤ = ≤ × ≤      (2.13) 

They extend this to the general case by induction: 
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This proof includes acknowledgement of the temporal aspect of the sample space 

considered. However, it is approximate as it considers the relative frequency of 

each of the possible outcomes, rather than the relative frequency of each of the 

mechanisms themselves. The authors solve this by modifying the contribution to 

(2.14) of a mechanism by considering its occurrence as a Poisson process. 

Harman and Davenport (1979) 

The study by Harman and Davenport noted earlier, also recognizes the 

composite nature of the bridge loading problem. In revised terminology, the load 

effect caused by the i-truck event has cumulative distribution function ( )iF ⋅ and 

the event has probability of occurrence, if . The distribution of load effect 

greater than a value, r, is then ( ) ( )1i iF r F r≡ − . Therefore, the ‘complete’ 

distribution of load effect greater than r is given by Harman and Davenport as: 

 ( ) ( )
5

1
C i i

i
F r f F r

=

= ⋅∑ (2.15) 

which is an application of the theorem of total probability (Chapter 3). The 

cumulative distribution function of the largest load effect from a sample of size 

n is then given by: 

 ( ) ( ) ( )1 exp
n

C CG r F r nF r   = − ≅ −    (2.16) 

which is reasonable for large n. Substitution of  (2.15) into (2.16) yields: 

 ( ) ( )
5

1

exp i i
i

G r nf F r
=

 = − ∏ (2.17) 

Section 2.4.2 describes the log-scale paper fitting procedure used by Harman and 

Davenport, based on (2.17). 
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2.5.2 Predictive Likelihood 

Introduction 

The relatively new theory of frequentist predictive likelihood can be used to 

estimate the variability of the predicted value, or predictand. Applications of 

predictive likelihood to real-world problems are sparse. Davison (1986) presents 

one in the context of his revised form of predictive likelihood. Lorén and 

Lundström (2005) present the only full paper (obtained for this work) on the 

application of predictive likelihood techniques; in their case, to the prediction of 

fatigue limit distributions for metals. 

Fisher (1956) is the first clear reference to the use of likelihood as a basis for 

prediction in a frequentist setting. A value of the predictand (z) is postulated 

and the maximized joint likelihood of the observed data (y) and the predictand 

is determined, based on a model with parameter vector θ . The graph of the 

likelihoods thus obtained for a range of values of the predictand yields a 

predictive distribution. Such a predictive likelihood is known as the profile 

predictive likelihood. Denoting a normed likelihood by ( );L xθ this is given by: 

 ( ) ( ) ( )| sup ; ;P y zL z y L y L z
θ

θ θ= (2.18) 

It is to be noted that likelihood is not a probability and so the usual conditional 

probability rule does not apply. Mathiasen (1979) appears to be the first to 

study Fisher’s predictive likelihood and notes some of its problems. Foremost for 

this work is the problem that it does not take into account the parameter 

variability for each of the maximizations of the joint likelihood function required 

(Lindsey 1996, Bjørnstad 1990). Lejeune and Faulkenberry (1982) propose a 

similar predictive likelihood, but include a normalizing function. 
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Predictive likelihood is a general concept (see Berger and Wolpert 1988) and in 

the literature many versions have been proposed. The paper by Bjørnstad 

(1990) is seminal in predictive likelihood for it collects all of the literature and 

examines each of the predictive likelihoods proposed. Bjørnstad notes that the 

Fisherian predictive likelihood of (2.18) “plays a central role in prediction”. The 

other predictive likelihoods considered by Bjørnstad are those based on 

sufficiency principles put forth by Lauritzen (1974), Hinkley (1979) and Butler 

(1986). Based on the Lauritzen-Hinkley definition, Cooley and Parke put 

forward a number of papers dealing with the prediction issue (Coole and Parke 

1987, Cooley et al 1989, Cooley and Parke 1990). However, their method relies 

on the assumption that the parameters are normally distributed, and they use 

Monte-Carlo simulation as a result. Leonard (1982) suggests a similar approach. 

Davison (1986) provides a relevant example of the application of predictive 

likelihood methods to river discharges and wave heights. Though he uses a 

different form of predictive likelihood, the explanation of his approach with the 

GEV distribution (Chapter 3) is important to this work. 

2.5.3 Multivariate Extreme Value Analysis 

Allowing for the effect of the dynamic interaction between the bridge and the 

trucks which form a loading event is essential to determine the total load effect 

to which the bridge is be subject. As part of a study described in Chapter 8, 

dynamic interaction simulations are described for 10 years of monthly maximum 

events. To determine the lifetime total load effect for the bridge, the correlation 

between static and total load must be accounted for. As extreme values of two 

correlated variables are required, multivariate extreme value analysis is adopted. 
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The study of multivariate extreme value theory began in the 1950s (Galambos 

1987). Coles (2001a) and Galambos (1987) agree that the work of Tiago de 

Oliveira was essential to its development – refer to Coles (2001a) and Galambos 

(1987) for references to his work. 

An approach to the modelling of bivariate extreme value distributions, including 

consideration and estimation of several dependence structures, is presented by 

Tawn (1988). Several general models of extreme value distributions are 

examined by Tawn (1990) who also presents an application – the modelling of 

tri-variate extreme sea level data. Large dimensional problems in multivariate 

extreme value modelling are considered by Embrechts et al (2000). In this 

paper, the authors also present an application in the field of sea level analysis 

for flood protection. Coles and Tawn (1991) present a generalization of the 

peaks-over-threshold (POT) approach to the modelling of multivariate extreme 

values.  

Capéraà et al (1997) present the modelling and estimation of extremal 

dependence functions. Klüppelberg and May (1998) also discuss the bivariate 

dependence functions and state that the only possible models are the mixed and 

logistic classes. Coles et al (1999) also discuss the dependence functions used in 

multivariate extreme value analysis. A thorough presentation of multivariate 

extreme value analysis and the modelling of dependence through the use of 

dependence structures and copulas is given by Demarta (2002). Segers (2004) 

also discusses the estimators of use for the bivariate extreme value dependence 

function of Pickands (1981) whilst Hefferenan (2005) gives a review of the 

dependence measures used in multivariate statistical modelling in recent years.  

Literature on the statistical computational aspects of multivariate extreme value 

statistics is sparse. Stephenson (2004) presents a user guide to R (R
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Development Core Team 2005) software for the analysis of multi- and uni-

variate extreme analysis. The guide gives several applications of the theory and 

serves well as a collection of examples, and an introduction to the theory. 

Nadarajah (1997) and Stephenson (2003) both describe procedures to simulate 

multivariate extreme value distributions. This is important for the application 

of bootstrapping methods to the problem 

There have been several applications of the theory, mostly in the statistical 

literature. Hawkes et al (2002) discuss the use of multivariate extreme value 

theory in estimating coastal flood risk due to combinations of high tides and 

wave surges. An application of bivariate extreme value analysis to the wave 

height and sea level problem of coastal flood defence is presented by Draisma 

and de Haan (2004). Zachary et al (1998) use the theory to estimate the loads 

caused on offshore structures by combinations of wave height, wave period and 

wind speed. An application of multivariate extreme value theory to structural 

design problems is considered by Coles and Tawn (1994); a detailed application 

to coastal engineering is presented. Also, Gupta and Manohar (2005) use 

multivariate extreme value theory in the analysis of random vibration problems. 

Specifically, a two span bridge subject to earthquake support motions is 

examined. 

The multivariate extreme value analysis used in this work is based mainly on 

the work of Stephenson (2003 and 2004). The software developed as part of 

Stephenson’s work has been used here – the evd library for the R (R

Development Core Team 2005) language. Stephenson’s work is, in turn, based 

on that of the many authors mentioned previously, most notably the work of 

Coles and Tawn. 
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2.6 Summary 

This chapter presents the background literature to the various aspects of this 

research project. Initially, the contemporary work in the field of bridge traffic 

load models is presented, followed by some discussion. One area of significant 

development of such models is presented in detail as it forms a substantial part 

of the current research: that of headway modelling. The literature for the main 

theme of this work is then presented – methods of statistically analysing the 

results of bridge traffic load simulations. An extensive discussion is provided, in 

which various problems with the current methods are outlined. Following this, a 

section outlining the background statistical literature of this work is presented. 

General statistical literature is not presented, rather, the literature specific to 

the main areas of use in this work. General statistical literature is discussed in 

Chapter 3 instead. 
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“Statistics in the hands of an engineer are like a 
lamppost to a drunk—they're used more for support 
than illumination”        - AE Housman 
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Chapter 3 - FUNDAMENTAL PROBABILISTIC METHODS 

3.1 Introduction 

Karl Pearson (1920) posed “the fundamental problem of statistics” as follows: 

An ‘event’ has occurred p times out of p + q = n 
trials, where we have no a priori knowledge of the 
frequency of the event in the total population of 
occurrences. What is the probability of its occurring 
r times in a further r + s = m trials? 

That Pearson’s ‘problem’ applies to the bridge loading problem is immediately 

apparent. Note also that prediction is an integral part to this “fundamental 

problem” – just as it is to the bridge loading problem. This chapter presents the 

background material necessary for the development and presentation of the 

statistical analyses used to solve Pearson’s “fundamental problem”.  

Initially, the fundamental definitions of any random experiment are given, 

followed by the mathematical tools need to operate on random experiments. 

Inference from the outcomes of a statistical experiment is then considered: the 

method of maximum likelihood, which is of central importance to this work, is 

presented here. Following this, the statistics of extreme values is introduced and 

the basic definitions and limitations of the theories outlined. Finally, the 

problem of predicting future outcomes of a statistical experiment is addressed. 

The material introduced herein forms the background to the analyses carried 

out by many other authors in this field, as may be seen from Chapter 2. 
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3.2 Basic Results 

The fundamentals presented in this section are required for further 

developments in this work as a whole. Standard texts that may be referred to 

for more information on these basic results are Mood et al (1974) and Ang and 

Tang (1975). Other highly relevant texts are Castillo (1988), Lindsey (1996), 

Coles (2001a), Cox and Hinkley (1974), Feller (1968), and Azzalini (1996). 

3.2.1 Probability, events and sample spaces 

The classical, or frequency definition of probability is: 

If a random experiment can result in n mutually exclusive and equally 

likely outcomes and if nA of these outcomes have attribute A, then the 

probability of A is the fraction nA/n.

The sample space is the collection of all possible outcomes of an experiment. 

Considering an experiment with a single die, the sample space would the 

integers 1 to 6, representing the six possible faces of the die. Sample spaces may 

be finite with discrete points, or infinite with continuous ‘points’. 

The terminology ‘event A’ is used to represent an outcome of a statistical 

experiment that has attribute A. The event space, A , is defined as the 

collection of all permutations of events, or the collection of all subsets of the 

sample space. The sample space itself is a subset of the event space. 

A probability function, [ ]P ⋅ , is a set function with a domain of the event space 

and counterdomain the interval [0,1] on the real number line. [ ]P A represents 

the probability of event A. Where Ω represents the sample space of an 

experiment, [ ] 1P Ω = , by definition. A probability space, denoted [ ]( ), , PΩ ⋅A ,
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describes the sample space, event space and probability function, respectively, 

for a given random experiment. 

Given two events, A and B in A , the conditional probability of event A given 

that event B has occurred is defined as: 

 [ ] [ ]
[ ]

|
P AB

P A B
P B

= (3.1) 

The division by [ ]P B is equivalent to a re-scaling of the sample space for A.

Conditional probabilities appear when an outcome is dependant on another 

outcome. 

 
Figure 3.1: Illustration of the theorem of total probability 

The theorem of total probability, illustrated in Figure 3.1, is defined as: 

For a given probability space [ ]( ), , PΩ ⋅A , if 1 2, , , nB B B… is a collection of 

mutually exclusive events in A , satisfying 
1

n

i
i

B
=

Ω =∪ and [ ] 0iP B > for 

1, 2, ,i n= … , then for every A∈A ,

[ ] [ ] [ ]
1

|
n

i i
i

P A P A B P B
=

= ⋅∑ (3.2) 

Ω

1B 2B nB

A

...
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In the cases where A does not depend on B, [ ] [ ]|P A B P A= , and the events A

and B are therefore independent. For several events, and using (3.1), 

independence is defined as: 

For a given probability space [ ]( ), , PΩ ⋅A , if 1 2, , , nA A A… is a number of 

events in A , then these events are said to be independent if and only if: 

 

[ ]
[ ] [ ]

[ ]
11

i j i j

i j k i j k

n n

i i
ii

P A A P A P A

P A A A P A P A P A

P A P A
==

   = ⋅   
   = ⋅ ⋅   

 
= 

 
∏

�

∪

(3.3) 

Independence of events features largely in this research and the above definition 

is of central importance. 

3.2.2 Random variables and distribution functions 

Often it is not the occurrence of a particular event that is of interest, but 

rather, the value of an attribute realised by the event: 

For a given probability space, [ ]( ), , PΩ ⋅A , a random variable, denoted X

or ( )X ⋅ , is a function with domain Ω and counterdomain the real 

number line. 

A random variable links the sample space with a unique real number; 

consequently all outcomes are described numerically. Another function is 

required to relate the realized value of the random variable to a probability: 



CHAPTER 3 – FUNDAMENTAL PROBABILISTIC METHODS 

65

The cumulative distribution function of a random variable X, denoted 

( )XF ⋅ , is that function with domain the real line and counterdomain the 

interval [0,1] which satisfies ( ) [ ] ( ){ }:XF x P X x P X xω ω = ≤ = ≤  .

( ){ }: X xω ω ≤ is read as the set of all points ω for which ( )X xω ≤ . The 

cumulative distribution function will normally be abbreviated to CDF. It is the 

cumulative aspect of this function (the ‘≤ ’) that urges another definition: 

The probability density function of a random variable X, denoted ( )Xf ⋅ ,

is that function defined by: 

 
( ) [ ] [ ]( )

( )
0

limX

X

f x P X x P X x

d F x
d x

∆→
= ≤ + ∆ − ≤

=
(3.4) 

The probability density function is abbreviated as PDF. It is to be noted that 

the above definitions relate to continuous random variables. The relationship 

between CDF and PDF is thus defined as: 

 ( ) ( )
x

X XF x f u du
−∞

= ∫ (3.5) 

There are many forms of distributions and any of the textbooks given at the 

start of this section may be referred to for further information. 

3.2.3 Probability paper 

Graphical methods for the analysis of statistical data have a long history and an 

important place even in modern techniques; the histogram being the most 

prevalent – see Coles (2001a) for example. In this work, data and their 

corresponding statistical models are usually graphed on probability paper; a 
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graph in which the x-axis is in arithmetic scale, and the data is plotted at its 

value. The y-axis is modified to give the standard variate of the distribution 

under study, such that, when the data is plotted, a straight line reveals 

adherence to the distribution. 

The plotting position of the data on probability paper is governed by the 

empirical distribution function: the CDF of a data set, 1, , nx x… . When the data 

is arranged in increasing order, for any one of the ix exactly i of the n

observations have a value less than or equal to ix , therefore the cumulative 

probability is given by: 

 [ ] ( )
1i i

i iP X x F x
n n

≤ = = ≈
+

� (3.6) 

The adjustment is made such that ( ) 1nF x ≠� . The right hand side of (3.6) is the 

empirical probability. It is this probability that is used to identify the plotting 

position. Gumbel (1954) and Castillo (1988) discuss many other plotting 

positions. The choice of plotting position is not as important as it once was, as 

most inference is now done numerically rather than graphically. 

Gumbel probability paper will be mostly used in this work and the Gumbel 

distribution is given by: 

 ( ) exp expI
xG x µ
σ

 − =     
(3.7) 

The standard Gumbel (or extremal) variate is: 

 xs µ
σ
−

= (3.8) 
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Therefore, the standard extremal variate, corresponding to the probability from 

the Gumbel distribution, s , and the empirical distribution, s� , for a given data 

point, x, may be plotted on the y-axis once the following inversions are applied: 

 
( )( )
( )( )

ln ln

ln ln

Is G x

s F x

 = − − 
 = − − 

��
(3.9) 

Should the extremal variates correspond for each of the data points, a straight 

line results. Thus, the comparison of the fitted data may be got by drawing a 

straight line through the data points. Figure 3.2 illustrates the concept: a 

straight line is fitted through the data points (in this case by maximum 

likelihood – see section 3.3.2). The left y-axis gives the standard extremal 

variate whilst the right y-axis gives the cumulative probability. The x-axis 

corresponds to the data values. 
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Figure 3.2: Gumbel paper probability plot. 
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It was previously stated that Gumbel paper is used, almost exclusively, in this 

research. However, it is not usually the Gumbel distribution being fit – rather 

the Generalized Extreme Value (GEV) distribution. This is a more flexible 

distribution that may exhibit curvature on Gumbel paper (or probability plot). 

Upward curvature reveals an asymptote to an x-axis value – corresponding to a 

physical limit on the statistical process. A curve asymptotic to a y-axis value (as 

well as a straight line) corresponds to a statistical mechanism with no physical 

limitation. Figure 3.3 gives two examples of GEV distributions plotted on 

Gumbel paper. 
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Figure 3.3: GEV distributions plotted on Gumbel probability paper: (a) 

bounded, and; (b) unbounded. 
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3.3 Statistical Inference 

Azzalini (1996) defines statistical inference as the operation through which 

information provided by a sample of a population is used to draw conclusions 

about the characteristics of that population. The population is defined as the 

totality of elements about which information is desired, and the sample is 

defined as a collection of observed random variables taken from the population.  

The following example will be developed through the following sections:  

consider a container holding 5000 small balls which are either black or white, of 

which the proportion of black balls is required. Rather than examining each of 

the 5000 balls, a sample could be taken at random from the container. Azzalini 

(1996) describes the reasons why this is often preferable. Suppose that 50 balls 

are drawn at random, of which 4 are found to be black. The proportion of black 

balls is ˆ 4 / 50θ = , in which the ‘hat’ notation shows that this is only an estimate 

of the true parameter value. It is reasonable to think that drawing another 

sample of 50 balls may not result in the same value for θ . However as of yet, it 

is the best estimate of the proportion of black balls in the population. Another 

issue is the sample size, and the amount of information it holds about the 

population: should 100 balls have been drawn and 8 found to be black, it is 

intuitive to expect extra ‘information’ about the estimate of θ from this larger 

sample. 

Approximating the hypergeometric distribution with the binomial distribution 

(valid for the size of the sample), the probability that the random variable Y

yields the observed number of black balls, y, is: 

 [ ] ( )5050
1 yyP Y y

y
θ θ − 

= = − 
 

 (3.10) 
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Approximating the set of possible values for θ as the interval [0,1] , it can be 

seen that (3.10) represents a family of probability distributions for each value of 

the parameter θ . Inference is identifying the true distribution of Y through 

estimation of the parameter θ (Silvey 1970, Lindsey 1996). 

The Likelihood method of inference is mainly used in this work. As will be 

shown, it is a robust, accurate estimator with excellent asymptotic properties. It 

is also a minimal sufficient statistic (Zacks 1971) – it contains as much 

information about the distribution of the data as the data itself (Mood et al 

1974). There are some known cases in which likelihood can give anomalous 

results (see for example, Zacks 1981), but these do not affect the work herein. 

3.3.1 Likelihood 

Edwards (1992) gives the first example of a likelihood argument and attributes 

it to Daniel Bernoulli, who states: “…one should choose the one which has the 

highest degree of probability for the complex of observations as a whole”. 

Edwards (1992) himself also defines likelihood informally: “Our problem is to 

assess the relative merits of rival hypotheses in the light of observational or 

experimental data that bear upon them”. Fisher first defined mathematical 

likelihood in 1912 in an undergraduate essay and continued to advance it, 

culminating in his paper “On the Mathematical Foundations of Theoretical 

Statistics” in 1922 (Fisher 1922, Alrich 1997). Fisher’s idea is to examine the 

probability of having observed the data that was observed, given the proposed 

probability model. For a probability density ( );Xf x θ – where the notation 

indicates that the density is a function of the parameter (or vector of 

parameters) of the model – the likelihood of having observed a particular 

realization x is defined as: 
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( ) ( ) ( ) ( ); ;L L x c f xθ θ θ θ= = ⋅ (3.11) 

where the notation emphasizes the dependence of the density upon the 

parameter, and similarly for the likelihood upon the data. The multiplicative 

constant is required to make the probability density a probability for each data 

point. For the set of n sample values the probability of having observed the 

observed values is: 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 2

1

; ; ; ;

; ;

n

n

i
i

L x c f x f x f x

L x c f x

θ θ θ θ θ

θ θ θ
=

 = ⋅ ⋅ ⋅ ⋅ 

= ⋅∏

…
(3.12) 

In practice it is more convenient to work with the log-likelihood to avoid the 

multiplicative nature of the likelihood function: 

 ( ) ( ) ( ) ( )
1

; log ; log ;
n

i
i

l x L x c f xθ θ θ θ
=

= = +∑ (3.13) 

Generally the constant ( )c θ is not involved in any calculations using likelihood 

as one seeks knowledge of relative likelihoods and c is thus not relevant. 

Returning to the example of the 5000 balls, it can be seen that for the single 

observed value 4y = , equation (3.10) corresponds to (3.11) and is thus the 

likelihood function for the parameter θ . This is graphed in Figure 3.4(a) which 

shows an increased likelihood for a parameter value around 0.05 to 0.10, relative 

to other possible values of the parameter. Also shown is the likelihood function 

for the case when the number of samples is 100 and the number of observed 

black balls in this sample is 8, as are the graphs of the likelihood ratio, which is 

the likelihood function, normalized on its maximum value, and the log-

likelihood, for comparison. 
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Figure 3.4: Likelihood functions for the ‘ball’ example: (a) absolute likelihood; 

(b) relative likelihoods, and; (c) log-likelihoods. 

The question regarding the amount of ‘information’ held in the data was raised 

previously: more information regarding the ‘true’ value of θ should surely be 

available from a larger sample. Trivially, if the sample is the total population, 

then the amount of information about θ is at a maximum. This increase of 

information may be seen in the likelihood ratio and log-likelihood graphs – the 

width of the 100n = curve is less than that of the 50n = curve. This means a 

smaller range of likely parameter values, at any level of relative likelihood, 

results from the larger sample size, than for the smaller. Thus the 100n = curve 

holds more information about the true parameter value, as expected. 
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3.3.2 Maximum likelihood and Fisher information 

A mathematical definition of the information contained in the sample may be 

obtained by considering the log-likelihood function: the value of the parameter 

that maximizes the likelihood function is most likely to be the ‘true’ parameter 

value. This is the Method of Maximum Likelihood. A parameter value found in 

this way is denoted θ̂ to emphasize that it is an estimate; the notional ‘true’ 

value of the parameter is denoted 0θ . Using the log-likelihood function, the 

maximum likelihood estimate (MLE) of a parameter is the value that satisfies: 

 
( );

0
d l x

d
θ
θ

= (3.14) 

Geometrically this is the slope of the tangent to the log-likelihood curve at its 

maximum (Figure 3.4). Using a Taylor series approximation about the MLE, 

the log-likelihood function is approximated as: 

 ( ) ( ) ( ) ( ) ( ) ( )2
2

2

ˆ ˆ1ˆ ˆ ˆ
2

d l d l
l l

d d

θ θ
θ θ θ θ θ θ

θ θ
= + − ⋅ + ⋅ − ⋅ +… (3.15) 

having dropped the dependency notation for brevity. Then approximately, 

incorporating (3.14) and dropping third-order and higher terms: 

 ( ) ( ) ( ) ( )2
2

2

ˆ1ˆ ˆ
2

d l
l l

d

θ
θ θ θ θ

θ
= + ⋅ − ⋅  (3.16) 

Empirically, equation (3.16) measures how informative the data is about the 

MLE. It states that the support offered by the data to θ̂ , and some other value 

θ , differs by an amount proportional to the second derivative of the log-

likelihood function about θ̂ . Hence, the observed (or Fisher) information (Cox 

and Hinkley 1974) is defined as: 
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( ) ( ) ( )2

2

ˆ
ˆ''

d l
l

d

θ
θ θ

θ
= − = −I (3.17) 

Referring to Figure 3.4(c), it is apparent that the curve for the larger sample 

size (n = 100) is narrower than that for the smaller sample size (n = 50) and is 

therefore more curved near the MLE than the log-likelihood function of the 

smaller sample. Hence, (3.17) may be perceived as the spherical curvature of the 

log-likelihood function at the estimate: its reciprocal is the radius of curvature 

at the estimate. The reciprocal is also the value of the Cramér-Rao lower bound 

for the variance of an unbiased estimator (Azzalini 1996, Mood et al 1974, Zacks 

1971) – the smallest possible variability a parameter estimator can have.  

Though the above has been presented relating to one-dimensional parameters, 

the theory is extendable to multi-dimensional parameters. In such cases the 

reciprocal of the information may be thought of as related to the volume under 

the likelihood surface. The square root of the determinant of the information 

matrix may be seen as a measure of the width of the likelihood surface 

(Edwards 1992). Also, the diagonal entries of ( )θI represent the variance of a 

parameter with respect to itself. Hence, the square root of the diagonal term 

corresponding to a parameter represents the standard error of that parameter. 

Figure 3.5 shows two log-likelihood surfaces for the normal distribution. The 

flatter surface is derived from 50 random deviates of ( )2100,5N ; the more 

curved surface is found from 200 random ( )2100,5N deviates. This figure clearly 

shows that ‘support’ for differing values of µ and σ drops away much quicker 

for the larger data set. Put another way, the volume under the curve at its 

maximum is less; its reciprocal is the information, which is thus greater. 
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Figure 3.5: Log-likelihood surfaces of ( )2100,5N , for n = 50 and 200. 

3.3.3 Asymptotic normality of an MLE 

The maximum likelihood estimator has many properties desired of an estimator 

– refer to Azzalini (1996), Edwards (1992), and Mood et al (1974) for further 

information. Of direct relevance is that it is a Best Asymptotic Normal (BAN) 

estimator. An estimator (for example, maximum likelihood), ( )T X , such that 

 ( ) ( )( ), vardnT X N θ θ→  (3.18) 

where n is the sample size, is said to be a BAN estimator if ( ) ( ) 1var θ θ −= I

which indicates that the estimator is asymptotically normally distributed. In the 

multi-dimensional case, the reciprocal of the observed information is the usual 

variance-covariance matrix of the parameter estimates. Therefore, parameters of 

distributions estimated using maximum likelihood estimation may be taken to 

be asymtotically normally distributed; the accuracy of the approximation 

improves with increasing sample size due to the central limit theorem. 
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3.3.4 Profile likelihood and deviance 

The previous section described the asymptotic distribution of maximum 

likelihood parameter estimates. Often, it is more useful to obtain an estimate of 

the actual distribution of a parameter (Barndorff-Nielsen 1983). In the uni-

dimensional case this does not pose a problem: Figure 3.4 illustrates how the 

parameter estimate varies. As the likelihood function cannot provide an absolute 

statement of the suitability of a parameter estimate, the likelihood ratio graph 

of Figure 3.4(b) is particularly important in aiding estimates of parameter 

distributions. Having evaluated the log-likelihood, the likelihood ratio is given 

by the difference of two log-likelihoods. The deviance function is defined as: 

 ( ) ( ) ( )ˆ2D l lθ θ θ = −  (3.19) 

As the log-likelihood is usually a negative quantity, the deviance is positive. The 

likelihood ratio is multiplied by 2 for reasons outlined by Lindsey (1996). The 

deviance, as defined in (3.19), is approximately chi-squared distributed with the 

number of degrees of freedom equal to the number of parameters in the model 

(Coles 2001a). With such knowledge, it is possible to work backwards from a 

pre-specified probability (such as 95%) to find the value of ( )l θ that defines the 

confidence region. Figure 3.6 illustrates this for the ball example. It can be seen 

that the 95% confidence interval narrows for the larger sample size, reflecting 

the increase in information available. Also, it is of note that the confidence 

intervals are not symmetric about the MLE (corresponding to zero deviance). 

Thus the distribution of the likelihood estimate is skewed which is not 

compatible with the assumption of normality. 
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Figure 3.6: Deviance function and confidence intervals for the ball example 

samples (note that the 2χ PDF graph is rotated 90°). 

In multi-parameter cases, the application of the preceding method is more 

difficult. It may be seen from Figure 3.5 that the parameters are orthogonal in 

multi-dimensional space, though not independent. To estimate the distribution 

of a parameter, a notional ‘slice’ through the likelihood surface is made parallel 

to the axis of the parameter of interest – approximately, the resulting cross 

section is the profile (log-)likelihood of the parameter of interest. However, the 

‘slice’ is in fact a point, as it must be taken at the MLEs of the other 

parameters, conditional on the current value of the parameter of interest. The 

profile log-likelihood of a parameter, iθ , is defined as: 

 ( ) ( )sup ,p i il l
θ

θ θ θ= (3.20) 

where θ denotes the restricted parameter vector which is θ without iθ and 

sup may be read as ‘the maximum of’. Thus, for each value of the parameter of 

interest, the profile log-likelihood is the maximized log-likelihood with respect to 

all of the other parameters. In the case of the example of Figure 3.5, the profile 
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likelihood for the µ parameter is shown in Figure 3.7. The 95% confidence 

intervals derived from the ( )2 0.95, 2χ distribution – where the number of 

degrees of freedom is 2, corresponding to the number of parameters in the model 

– is also shown in Figure 3.7. Note also that each unit of the 2χ distribution 

corresponds to two units of log-likelihood due to the deviance function. Further, 

it may be seen that the confidence intervals are close to symmetric about the 

MLE of the mean; the normal approximation in this case would be quite 

reasonable. 
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from χ2(0.95,2). 

Though only parameters have been examined here, the method of profile 

likelihood can be extended to cover any functional combination of the 

parameters. As will be shown in Chapter 7, this extension of profile likelihood 

has considerable benefit for the prediction of extreme values. 

µ µ

χ2
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3.4 Statistics of Extremes 

The statistics of extremes, or extreme value theory, is concerned with 

identifying trends in the extreme (maximum or minimum) values obtained from 

a set of samples. The theory has found extensive use in the practical sciences 

where decisions have to be made and not postponed until a better theory, or 

more data emerges (Castillo 1988, Coles 2001a). Bardsley (1994) argues that the 

theory has reached its zenith and that the results of an elaborate objective 

analysis are not significantly better than a subjective analysis by an experienced 

investigator. This view is certainly not as widespread as its counterpart. The 

statistical analyses used in this work employ extreme value theory throughout. 

3.4.1 Basic formulation 

Only the distribution of the maximum of a sample is considered here, though 

that of the minimum follows a similar formulation – refer to Castillo (1988), 

Ang and Tang (1984) and Galambos (1978) for more details on what follows.  

Consider a set of n random variables, 1, , nX X… and allow [ ]1max , , nY X X= … .

Given a set of observations, 1, , nx x… for which [ ]1max , , ny x x= … . When the 

iX s are independent, the distribution function, ( )YF ⋅ , of y is: 

 [ ] [ ]1( ) ; ;Y nF y P Y y P x y x y= ≤ = ≤ ≤… (3.21) 

which results because the largest of the ix s is less than or equal to y if, and only 

if, all of the ix s are less than or equal to y. If the iX s are independent and 

identically distributed (iid), then, similar to (3.3): 

 [ ] [ ]1
1

; ;
n

n i
i

P x y x y P X y
=

≤ ≤ = ≤∏… (3.22) 
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and therefore, where ( )XF ⋅ is the distribution function of 1, , nX X… :

[ ]( ) ( ) n
Y XF y F y= (3.23) 

The distribution ( )XF ⋅ is known as the parent distribution. As the parent CDF 

is raised to the power of n, it is important that the parent distribution is both 

known and closely models the data – especially in the upper tail of the 

distribution (Coles 2001b, Castillo 1988). Any deviations of the model from the 

true distribution are raised to the power of n and can therefore distort the 

analysis. Also, explicit expressions for the distribution of the maxima are 

difficult to obtain from (3.23). These problems with this formulation have 

resulted in the development of the asymptotic theory of extreme order statistics 

– most notably associated with Fisher and Tippett (1928), though other authors 

were writing on this subject around the same time (Gumbel 1958). 

3.4.2 Fisher-Tippett and Gnedenko 

The asymptotic theory of extreme order statistics attempts to identify possible 

limiting forms of the distribution of the extreme as n tends to infinity, avoiding 

the degenerate results; 0 when ( ) 1XF y < , and 1 when ( ) 1XF y = . Fisher and 

Tippett (1928) recognized that the maximum of N sets of observations of n

values of X, must also be the maximum of n values of X. Therefore any non-

degenerate distribution must be of the same form, but linearly transformed by 

location and scale parameters ( na and nb respectively) that depend only on n:

( ) ( )n
n nG y G a b y= +  (3.24) 

where ( )G ⋅ indicates an extreme value distribution representing a limiting 

asymptotic form of the distribution of maxima. This equation is known as the 

stability postulate and any distribution that meets this equation is said to be 
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max-stable. With this as a basis, the limiting form of the distribution of the 

maximum from a parent distribution is: 

 [ ]( ) ( )n
X X n nF y F a b y= +  (3.25) 

Fisher and Tippett gave three solutions to this equation, based on different 

values for na and nb : the Type I, II and III limiting forms. Gnedenko (1943) 

established the strict mathematical conditions under which the Type I, II or III 

distributions form the limiting distribution for various forms of parent 

distributions – known as the domain of attraction of the parent distribution 

(Castillo and Sarabia 1992). 

3.4.3 Jenkinson and von Mises 

The three forms of limiting distributions, to which almost all distributions 

converge, are the Gumbel, Frechet and Weibull distributions (Gumbel 1958). 

Jenkinson (1955) and von Mises (1936) independently solved expression (3.25) 

for a single form: the Generalized Extreme Value distribution (GEV), given by: 

 
1/

( ) exp 1 yG y
ξ

µξ
σ +

  −  = − −       
(3.26) 

where [ ] max( ,0)x x
+
= and where the parameters satisfy ∞<<∞− µ , 0>σ and 

∞<<∞− ξ . The model has three parameters: location, µ ; scale, σ ; and shape, 

ξ . The Type II and III families correspond to the cases 0ξ > and 0ξ <

respectively. The Type I family is the limit of ( )G y as 0ξ → . The major 

benefit of using the GEV distribution is that, through inference on ξ , the data 

itself determines the correct tail model, avoiding the need to make a subjective 

a priori judgment on which of the Fisher-Tippett limiting forms to adopt.  
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The power of the concept of asymptotic limiting forms is that the actual form of 

the parent CDF ( )XF y is not required for fitting the GEV (or indeed any of the 

extreme value distributions). It is worthy of note, however, that the speed of 

convergence with n repetitions of the parent distribution to the GEV varies: the 

normal distribution is notoriously slow, whist the exponential distribution 

converges rapidly (Cramér 1946). Figure 3.8 illustrates the exact and 

asymptotic (Gumbel) distributions from these two parent distributions – based 

on the constants na and nb given by Galambos (1978) and Cramér (1946) and 

the methodology of Gumbel (1958). 
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exponential distribution, and; (b) standard normal distribution. 
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From Figure 3.8, the difference in the speed of convergence for these two 

distributions is readily apparent. Castillo (1988) and Gomes (1984) discuss 

penultimate forms of asymptotic distributions; for suitable parameters the 

Weibull distribution (a particular case of the GEV distribution) can offer a 

better approximation of the distribution of maxima from a normal parent than 

its true asymptotic distribution (Gumbel). When it is necessary to check on the 

form of the parent, due to small sample sizes, speed of convergence tests may be 

used and are detailed in Galambos (1978). 

3.4.4 Estimation 

The method of maximum likelihood requires the maximization of the log-

likelihood function. Optimization techniques often deal with minimizing 

functions. Hence minimization of the negative log-likelihood is usually 

performed. In this work, the GEV distribution is mostly used and Jenkinson 

(1969) gives the log-likelihood function for the GEV distribution: 

 ( )
1

1 1

1, , ; log 1 log
n n

i i
i i

l y n y y ξµ σ ξ σ
ξ = =

 
= − − − − 

 
∑ ∑ (3.27) 

 1 0 1, ,where for i
i

xy i nµξ
σ
− = − > = 

 
… (3.28) 

For parameter combinations where 0iy < (which occurs when a data point ix

has fallen beyond the range of the distribution) the likelihood is zero and the 

log-likelihood will be numerically ill-defined. Solution of (3.27) is done by 

numerical means – there is no analytical solution. Jenkinson (1969) describes an 

approximate iteration technique for solving the equation which uses the 

expected information matrix (the matrix of second derivates of (3.27) with 

respect to each of the parameters). However Jenkinson only derived 

approximate values for this. Prescott and Walden (1980) detailed the elements 
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of the observed information matrix, ( )θI , for the GEV distribution. They 

furthered this work (Prescott and Walden 1983) by proposing a Newton-

Raphson technique which uses ( )θI and is found to converge quickly. Hosking 

(1985) presents an algorithm for the estimation of the parameters of the GEV 

distribution based on Prescott and Walden’s proposal. 

Good starting values for the minimization of the negative log-likelihood function 

of the GEV distribution are obtained from the method of probability weighted 

moments (PWMs) described by Hosking et al (1985). The exact solution 

requires iterative methods, but within the range usually encountered in practice, 

{ 0.5 0.5}ξ− ≤ ≤ , Hosking et al (1985) have proposed an estimator, rb , which uses 

the data, jx , and is then used to solve for the other parameters in the sequence: 

 j

n

j
r x

rnnn
rjjjnb ∑

=

−

−−−
−−−

=
1

1

)()2)(1(
)()2)(1(

�
� (3.29) 

 1 0

2 0

2 log 2
3 log 3

b bc
b b

−
= −

−
(3.30) 

 2ˆ 7.8590 2.9554c cξ = +  (3.31) 

 
)21)(ˆ1(

)2(ˆˆ ˆ
01

ξξ
ξ

σ
−−+Γ

−
=

bb
(3.32) 

 0
ˆ ˆˆ (1 ) 1ˆb σµ ξ
ξ

 = + Γ + −  (3.33) 

The PWM approach is written in C++ and used to initiate a C++ version of 

Hosking’s (1985) algorithm. Data sets from Coles (2001a) are used to verify the 

output against published results. It is found, however, that there are cases in 

which Hosking’s algorithm does not converge, or does not achieve the same 

minimum function value as the WAFO MATLAB toolbox (Brodtkorb et al 2000) 
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which was used occasionally to verify output. As a result, a more robust 

optimization method is implemented. 

The Nelder-Mead (NM) optimization algorithm (Nelder and Mead 1965) is also 

known as the amoeba algorithm (Numerical Recipes in C – Press et al 1992) 

because of its slow robust movement across the k-dimensional surface of a 

function, where k is the dimension of the optimization problem. The NM 

algorithm is based on a simplex – a geometric shape with 1k + corners. Lagarias 

et al (1997) describe, in detail, the operations of the algorithm. 

In the processing undertaken in the AnalyseEvents program (Chapter 4), the 

PWM method is used to initiate both the Hosking and NM algorithms – 

processing time is not substantial in any case. The program checks to see if the 

Hosking algorithm has a smaller negative log-likelihood than that of the NM 

algorithm. If not, the results of the NM algorithm are used. While good results 

can be obtained with manual re-injection of the Hosking algorithm, in general 

this is not possible for this research – the number of individual GEV fits is 

substantial for each run. Checks have been performed both against published 

results and other algorithms such as WAFO (Brodtkorb et al 2000) and EVD 

(Stephenson 2004) for the R-language (R Development Core Team 2005). 
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3.5 Prediction 

Some of the solutions to Pearson’s “fundamental problem of statistics” are 

described in this section. Initially the traditional extrapolation procedure – 

which uses a fitted distribution – is described. However, the variability of both 

the parameters and the data itself intuitively produce uncertainty in the 

estimate found in this manner. The delta method uses the asymptotic normality 

principle to estimate this variability, whilst the bootstrap method uses 

computational means to establish variability. Both methods are briefly 

described here. 

3.5.1 The characteristic value and return period 

The characteristic value is that value of a random variable that is expected to 

be exceeded once in a given return period. Given a random variable X , with 

distribution function ( )XF ⋅ , the probability of exceeding a value, u, is: 

 [ ] 1 ( )XP X u F u> = − (3.34) 

For a given return period, R , consider n repetitions of the sampling period, XT ,

from which X was determined, such that: 

 
X

Rn
T

= (3.35) 

In n such repetitions, the probability that the characteristic value, u, will be 

exceeded is: 

 [ ] ( )1 ( )XP X u n n F u> = −in  repetitions (3.36) 

From the definition of a characteristic value, this probability must be equal to 

unity, that is, is expected to occur at least once in n repetitions, hence, 
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[ ]1 ( ) 1
1( ) 1

X

X

n F u

F u
n

− =

⇒ = −
(3.37) 

The characteristic value may therefore be determined by: 

 1 11Xu F
n

−  = − 
 

(3.38) 

3.5.2 Extrapolation 

In the work that follows, it will be usual to have a return period of 1000 years 

with each year comprising 50 working weeks of data with 5 working days per 

week, for reasons outlined in Chapter 4. The distribution obtained from the 

simulations is usually that of the maximum per day: the number of repetitions 

of the sampling period is then: 

 

1000

1000
1000

1
1000

1000 50 5 250 000
1( ) 1 0.999996

(0.999996)

X

X

n

F u
n

u F −

= × × =

⇒ = − =

⇒ =

(3.39) 

As described previously, this will correspond with a standard extremal variate 

derived from the Gumbel distribution as: 

 ( ) ( )( )1 0.999996 log log 0.999996

12.429
IG− = − −

=
(3.40) 

An example of such extrapolation is shown in Figure 3.9 on Gumbel probability 

scale (Ang and Tang 1975, Section 3.2.3). Also, as the sampling period 

approaches the return period, the extrapolation distance decreases, intuitively 

resulting in an better estimate – though this needs to be proved using other 

methods.  
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There is inherent variability in the extrapolation process described: parameter 

estimates vary due to estimator uncertainty; the data varies; and different 

investigators may use different estimation techniques, which may or may not be 

biased. Prediction of a single number does not reflect the statistical nature of 

the underlying problem. Various methods for estimating the variability of the 

characteristic extreme are available; two are described next. Another method is 

preferred and described in Chapter 7 in relation to this research. 
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Figure 3.9: Sample extrapolation procedure. 

3.5.3 The Delta Method and the normality assumption 

The delta method for the approximation of moments of functions of random 

variables is usually based on a first-order Taylor series expansion of the function 

about the point of interest (Rice 1995, Oehlert 1992). Given a random variable 

X and a one-to-one function, Y = g(X), the first-order Taylor approximation 

about the mean is: 

 ( )( ) ( ) ( ) X
X X

d gY g X g X
dx
µµ µ= ≈ + − (3.41) 
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Noting that this is a linear function of X, the linear transformation of variables 

rule (Mood et al 1974) gives: 

 ( ) ( )
2( )Var VarXd gY X

dx
µ = ⋅ 

 
 (3.42) 

Use of the matrix form of the Taylor series expansion (Beck and Arnold 1977) 

enables this to be extended to the case of several variables: 

 ( ) ( ) ( )Var T
XY g g=∇ ⋅ ⋅∇X V X (3.43) 

where Y is a scalar value of the function ( )g ⋅ with parameter vector X . XV is 

the variance-covariance matrix of the parameter vector and ( )g∇ X is the 

gradient vector of the function (Coles 2001a, Azzalini 1996, Efron and 

Tibshirani 1998, Lindsy 1996, Zacks 1971). 

In (3.41) when X represents the (asymptotically) normally-distributed 

parameter(s) of a distribution, and as Y is a linear transformation of X, then: 

 ( ) ( )( ), Vard
XY N g Yµ→  (3.44) 

where ( )Var Y may be given by (3.42) for a single parameter function or (3.43) 

for a multi-parameter function. 

For large sample sizes the delta method approximations give good results as a 

result of the central limit theorem (Mood et al 1974). However, for smaller 

sample sizes and where the linear approximation of the function in the region of 

interest is not good, the delta method can give inaccurate results (Rice 1995). 
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With respect to the GEV distribution used in this work, for R sampling periods, 

the maximum likelihood estimate of the characteristic value is got by 

rearranging the equality (3.37): 

 ( )ˆ 1R Rz g R y ξσµ
ξ

 = = + ⋅ −  (3.45) 

where, 1log 1Ry
R

 = − 
 

. From (3.43), letting ( ), , Tθ µ σ ξ≡ =X and: 

 

( )

( ) ( )1 2 1

ˆ

; ;

1; 1 ; 1 log

T
R

R R R

R R R R

g z

z z z

y y y yξ ξ ξ

θ

µ σ ξ

ξ σξ σξ− − −

∇ =∇

 ∂ ∂ ∂
=  ∂ ∂ ∂ 

 = − − − 

(3.46) 

From (3.43) with the substitutions of (3.45) and (3.46) the distribution of ˆRz

may be got from (3.44). The estimate notation on the parameters of the GEV 

was dropped for clarity: the expressions are evaluated at the estimates. 

Implicit in methods like the delta method, is the central limit theorem and the 

assumption of asymptotic normality. Often it is not the case that the sample 

size is sufficient to converge to normality and the distribution may, in fact, be 

skewed. It is shown in Chapter 7 that the distribution of the bridge traffic load 

effect return level estimate is generally highly skewed and therefore highly non-

normal. Therefore confidence limits, or variance estimates, based on the 

assumption of normality can give misleading results and should be avoided 

where possible. 

3.5.4 Bootstrapping 

The bootstrap has emerged as a fundamental tool in statistical analysis since its 

introduction (Efron 1979). This is, in part, due to the ready availability of 
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computing power and the intuitive nature of its application. Efron and 

Tibshirani (1993) and Davison and Hinkley (1997) both give thorough accounts 

of bootstrapping and its flexibility of use. Boos (2003) exemplifies the power of 

the bootstrap applied in a civil engineering, extreme value analysis, setting. 

The bootstrap process (Figure 3.10) consists of re-sampling the original data 

(non-parametric bootstrap) or a model fitted to it (parametric bootstrap) and 

estimation of the statistic, ( )s ⋅ , of interest for the model. This process is 

repeated many times (bootstrap replications) and a distribution of the statistic 

of interest is found. 

 
Figure 3.10: Illustration of the bootstrap process. 

Extreme values are of particular importance to this work. Efron and Tibshirani 

(1993) describe a case where the bootstrap fails to give reasonable answers due 

to the sparsity of data in the tail, and the associated poor estimate of the true 

distribution by the empirical distribution (3.6).  

As an illustration of this problem, and the non-parametric bootstrap process in 

general, consider a data set 1, , nx x… randomly taken from a uniform 

distribution of bounds [ ]0,θ . The maximum likelihood estimator for θ is: 

 
1, ,

ˆ max ii n
xθ

=
=

…
(3.47) 

( )1, , nX x x= …Data Set

Bootstrap samples * *
1 BX X��

Bootstrap replications ( ) ( )* *
1 Bs X s X��  

��
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Figure 3.11: Problem noted by Efron and Tibshirani (1993): (a) non-parametric 

bootstrap estimate; (b) parametric bootstrap estimate; (c) sample histogram, 

and; (d) histogram of the parametric bootstrap populations. 

For the interval [ ]0,1 , 0 1θ = and a sample of n = 50 is generated on this 

interval from which ˆ 0.9858θ = ; the histogram for the sample is shown in Figure 

3.11(c). For each bootstrap replication, the data is sampled, with replacement, 

to provide a bootstrap sample from which an estimate of *
îθ is made. Such 

estimates are made for B = 1000 bootstrap replications. The histogram of these 

estimates is shown in Figure 3.11(a). Further, to obtain an estimate of the 

actual distribution of θ̂ , 1000 further samples of size n = 50 were randomly 
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generated on the interval [ ]0,1 . The resulting distribution of θ̂ is shown in 

Figure 3.11(b). 

It can be seen from Figure 3.11 that the bootstrap distribution does not match 

that of the Monte-Carlo estimated distribution. Efron and Tibshirani (1993) 

refer the reader to Beran and Ducharme (1991) for further information on this 

problem. The example presented is a non-parametric bootstrap method; the 

parametric bootstrap method does not fail in this setting Figure 3.11(b). It is to 

be noted that the variability of the parameters of the parametric bootstrap 

cannot be taken into account (Efron and Tibshirani 1993); when compared to 

the method of Chapter 7, this becomes significant. 
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3.6 Summary 

The basic statistical methods, essential to the work that follows, have been 

presented either in detail or by introduction and reference. Basic tools that will 

be used throughout this work, such as the method of maximum likelihood, 

probability paper, characteristic values, return periods and extrapolation have 

also been presented. More advanced tools that will be used further have also 

been presented, for example: profile log-likelihood, the bootstrap, Nelder-Mead 

solution of the GEV likelihood function, Fisher information, probability 

weighted moments, and the speed of convergence of the asymptotic extreme 

value distributions. Basic methods of prediction analysis such as the delta 

method and the bootstrap approach have also been presented. 
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Chapter 4 - SIMULATION OF BRIDGE TRAFFIC LOADING 

4.1 Introduction 

This chapter describes the measure, model and simulate phases of the bridge 

traffic load model used in this research. This approach has become more 

prevalent in recent years as more accurate unbiased measurements of real traffic 

have become available due to progress in Weigh-In-Motion (WIM) technology.  

WIM measurement, and its accuracy, is investigation by many authors (Jacob 

and OBrien 2005, OBrien et al 2005). The implication of the accuracy of site 

measurements on resultant characteristic load effects has been studied by 

O’Connor (2001) and O’Connor et al (2002). The objectives of this research 

focus on the efficient use of expensive site data such that sufficiently accurate 

predictions of future load effect are made by further statistical analysis.  

Basic statistical distributions of measured traffic characteristics form the input 

for the traffic model. Such an approach enables site-specific traffic 

characteristics to be generated which, even though not necessarily measured, 

represent those of the site. This chapter describes the modelling process 

undertaken for this research. 

The software tools developed for this research are described in Section 4.5. The 

adoption of object-oriented programming techniques is shown to have significant 

benefit for traffic load simulation. Substantially increased periods of simulation 

are possible, increasing the amount of information available to the statistical 

analysis, which reduces uncertainty in the extreme. 
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4.2 Measurement of Highway Traffic 

This work is based on traffic data from a number of European sites. The 

development of simulation methodologies is generally independent of the 

accuracy and amount of traffic data obtained from these sites. However, 

progress in the overall process does depend on having a sufficient quantity of 

data upon which reasonably general methods may be based. 

WIM technology is the method through which the measured traffic data is 

obtained, and it is explained briefly in the following section. The work of Grave 

(2001) formed the early basis of this research programme and the sites analysed 

in his research are mainly used in this work. Those sites, and other sites also 

used, are described later in this section. 

4.2.1 Weigh-In-Motion measurement 

As outlined previously, highway traffic is essential to the bridge traffic load 

simulation process. Static weigh stations are generally not suitable for this 

purpose: it is known that traffic measured with such installations is often biased 

(Laman and Nowak 1997) as drivers of overweight trucks become aware of the 

installation and avoid the site. Therefore, for bridge traffic loading purposes, the 

measurement system must be unobtrusive so that unbiased data is gathered. 

Data should be recorded continuously for the duration of the recording period. 

Also, measurements of the traffic in free-flow are required to obtain headway, 

speed and overlapping data. WIM technology has been developed to meet these 

requirements. Pavement-based WIM systems use sensors located in the road to 

detect and weigh each of the axles. Alternatively, Bridge-WIM systems 

effectively use the bridge as a form of weighing scales. Either system can be 

used to collect traffic data that may be used in bridge loading studies. Recent 
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advances in the accuracy and durability of WIM technology have improved the 

accuracy of the measured truck and axle weight statistics (Jacob et al. 2002). 

O’Connor et al. (2002) have looked at the important issue of sensitivity of 

bridge loading to the accuracy of the original weight measurements. 

Figure 4.1 illustrates the Bridge-WIM process; an example of a Bridge-WIM 

installation is shown in Figure 4.2 and a typical layout of the detectors is shown 

in Figure 4.3. For this layout, an example of the voltages realised by the 

passage of a truck is shown in Figure 4.4. A passing vehicle induces voltages in 

the axle detectors which give its speed, transverse position, number of axles, 

axle spacing and, importantly for flow and headway, the time stamp of arrival. 

The voltages induced in the strain transducers are processed with the axle 

detector information through a Bridge-WIM algorithm (OBrien et al 2005) to 

give the axle weights and GVW (Gross Vehicle Weight) for the vehicle.  

Figure 4.1: Bridge Weigh-In-Motion overview (courtesy of ZAG, Slovenia). 
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(a) (b) 

Figure 4.2: WIM installations: (a) road surface axles detectors; (b) bridge soffit 

strain transducers.  

Figure 4.3: Typical Bridge-WIM installation showing the locations of axle 

detectors and strain transducers along with their channel numbers. 
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Figure 4.4: Sample Bridge-WIM data corresponding to the layout of Figure 4.3. 

4.2.2 Description of sites and spans 

French WIM Sites 

Grave (2001) analyses the traffic characteristics of four French WIM sites in 

detail; the main characteristics of which are given in Table 4.1. These traffic 

data files were obtained from the Laboratoire Central des Ponts et Chaussées 

(LCPC) of Paris and some are deemed representative of general European 

traffic (Bruls et al 1996, O’Connor et al. 1998). 

There are some limitations to the data from these sites that must be noted. 

Headway data for the A196 and A296 is not useable as truck arrivals were only 

noted to the nearest second – for accurate headway modelling (Chapter 5) it is 

required that times of arrival be noted to the nearest hundredth of a second. 

The recorded speeds for the Auxerre site are constant for each lane. Therefore, 

the speeds were given a variance in sympathy with that of the other sites. 
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Name of site 
Auxerre 

(A6) 

Angers 

(RN 23) 
A196 A296 

Road type Motorway 
National 

Route 
Motorway Motorway 

Location 
Near 

Auxerre 
Near Angers Near Ressons

Near 

Cambrai 

Total no. of lanes 4 3 6 4

No. of lanes recorded 4 2 4 4

Time of recording May 1986 April 1987 Sept. 1996 Sept. 1996 

Duration of record 1 week 1 week 5 days 1 week 

Average daily flow – 

Direction 1 
3336 1536 8376 3024 

Average daily flow – 

Direction 2 
3408 1656 7536 3216 

Table 4.1: The French WIM sites (Grave 2001). 

Hrastnik Bridge, Slovenia 

The Hrastnik Bridge (Figure 4.5) is analysed as part of a SAMARIS research 

project for European infrastructure needs. In total, 4 days of measurements were 

taken in April 2004. Average hourly flows of 25 and 24 for directions 1 and 2 

respectively were recorded, though this is not a true representation due to the 

very low volume of truck traffic during the night. The peak truck flow occurs 

between 1100 and 1200 hours and is 59 and 55 trucks per hour for directions 1 

and 2 respectively. The headway data got from this site is used to compare that 

of several European sites to aid the formation of the headway modelling method 

developed in Chapter 5. 
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Figure 4.5: Hrastnik Bridge, Slovenia. 

Mura River Bridge, Slovenia 

The Mura river bridge (Figure 4.6) is used to statistically analyse dynamic 

interaction of trucks and bridges. This is a two-lane, bi-directional, 32 m 

simply-supported bridge span which forms part of a multi-span structure. It 

consists of 5 longitudinal prestressed concrete beams, a reinforced concrete slab, 

and 5 transverse diaphragm beams. A 3-dimensional finite element model was 

developed by Brady (2004) for the bridge, and calibrated using field 

measurements. The use of this model is described in Chapter 8. 

Figure 4.6: The Mura River Bridge. 
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4.2.3 Limitations of the WIM data 

There are aspects to the WIM data recorded at the various sites that can limit 

the range of its applicability. An example of such an aspect is that only vehicles 

of greater than 35 kN were recorded at most of the sites but this is usual when 

the data is to be used for bridge loading purposes (Cooper 1995, Grave 2001, 

Galambos 1979). However, the incidence of lighter vehicles clearly has an affect 

on the spatial distribution of trucks, for example. Therefore, it is an implicit 

assumption that neglecting light vehicles does not have an affect on the bridge 

loading.  

The age of some of the data sets used in this research could also be cause for 

concern. However, it is not the absolute value of characteristic load effect that is 

of interest in this work, rather the methodologies of use in its derivation. 

Therefore inaccuracies in the WIM data are not included in this work. 

Of a more significant nature is the condensation of WIM data for 4-lane sites to 

input for the 2-lane bridge traffic loading model: the two outer lanes of such 

sites are used as the equivalent 2-lane traffic loading. This is a conservative 

assumption: it is well known that there is a tendency for cars to ‘sort’ 

themselves out from between trucks in a multi-lane environment (Hayrapatova 

2006), resulting in a higher percentage of trucks than would usually be present 

on a two-lane road. The sorting phenomenon can be due to differences in 

desired speeds and differing speed restrictions, and may also be caused by small-

vehicle drivers’ preference for avoiding significantly larger neighbouring vehicles. 

An example of the sorting that occurs is shown in Figure 4.7. 
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Figure 4.7: Anecdotal evidence of sorting (A6 France, June 2005). 

In conclusion, as this work is mainly concerned with developing procedures for 

the analysis of truck loading on bridges, and as general conclusions relating to 

truck traffic are not attempted, problems with specific data sets are not deemed 

significant. Further, should a detailed site-specific analysis be attempted, the 

measurement setup can be designed in advance to minimize factors that would 

contribute to error. 
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4.3 Statistical Considerations for Traffic Models 

Traffic load models based on WIM data must faithfully represent the measured 

traffic. The statistics taken from a set of measured traffic data need to be 

carefully assessed to avoid introduced inaccuracy, or misrepresentation. In the 

following sections, the decisions and assumptions made in forming the traffic 

load model of this research are described. The underlying statistical 

relationships, temporal variations and considerations for subsequent extreme 

value analysis are discussed in relation to the measured WIM data. 

4.3.1 Underlying statistical relationships 

Traffic is a complex process and fundamentally is an outcome of many decisions 

made by many humans. For example, the peak in the GVW distribution near 

the legal limit reflects the economic-based decision-making of many hauliers. It 

is therefore possible to reason as to possible characteristics of traffic, and the 

relationships that may exist therein. Of course, not all such relationships are as 

the result of human intervention, other factors such as mechanical limitations 

can also play a part. In any case, many relationships do exist, and those 

important to bridge traffic load are assessed. 

Speed and GVW 

Due to the mechanical limitations of trucks, the acceleration and deceleration 

performance of heavily laden vehicles cannot be expected to match that of 

lighter vehicles. Drivers of such vehicles are expected to take this into account 

and drive at a safer, lower speed. Therefore it seems reasonable to expect a 

negative correlation between speed and GVW, and this is indeed the case 

(Figure 4.8), though it is not as significant as may be presumed. 
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Figure 4.8: Speed and GVW relationship for the A196 site. 

In the traffic model of this work, no allowance for this correlation is made. This 

is reasonable considering both the weakness of the correlation and the effect 

that speed has on the value of static loading events: it is headway that is more 

important. 

Lead- and Following-Truck GVWs 

Anecdotally, it would not be unusual for a fleet of similarly laden vehicles to 

leave a depot concurrently. Correlation between the GVW of these trucks may 

then be observed. On bi-directional two-lane bridges, such correlation could only 

occur with lead- and following-trucks. Further, correlated GVWs are only of 

interest if the trucks are sufficiently close to contribute to a same-lane 2-truck 

event. At a typical highway speed of 80 km/h, a vehicle travels nearly 90 m in 4 

seconds. Therefore, for the Auxerre and A196 sites, lead- and following-truck 

GVWs are examined only when the headway is less than 4 seconds. 
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Histograms for the lead- and following-truck GVWs from the A196 and Auxerre 

sites are shown in Figure 4.9. It appears that there is little evidence for 

correlation – there does not appear to be significant differences between the 

lead- and following-truck GVW histograms for either site, allowing for some 

slight random variation. These histograms may be seen as the marginal 

distributions of a bi-variate frequency distribution which Figure 4.10 illustrates. 

It appears that the surface is reasonably symmetrical about the main diagonal. 

This further suggests that there is no significant correlation. 
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Figure 4.9: Histograms of lead- and following-truck GVWs for headways less 

than 4 seconds. 
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Figure 4.10: Frequency surface plot of the A196 lead and following truck GVW 

(in units of deci-tonnes). 

The number of occurrences of trucks with correlated GVWs may not be of 

sufficient magnitude to noticeably affect the bi-variate distribution of all the 

trucks. It is therefore worthwhile to consider the deviations from true 

independence, which is represented as perfect symmetry about the main 

diagonal of the bi-variate distribution. Figure 4.11 shows the deviations from 

independence, represented as differences in the lower triangle from the upper 

triangle of the bi-variate distribution. There is no apparent pattern to the 

spread, though again it is possible that any real correlation may be swamped by 

random variation. Random error variation, by virtue of the central limit 

theorem is often thought to occur as normally distributed (Ang and Tang 1975, 

Mood et al 1974). The histogram of the deviations is also drawn in Figure 4.11. 

It can be seen that the variations appear to be normally distributed about zero. 
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It may thus be inferred that there is no apparent systematic deviation from true 

independence. It is to be acknowledged however, that correlated trucks, whilst 

so rare as to not distort the result presented from independence, may exist and 

may contribute to extreme events. As no information about such events is 

available, and based on the results presented here, in this work, no correlation 

between lead and following truck GVWs is allowed for.  
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Figure 4.11: Deviations from true independence for A196 GVWs: (a) difference 

of lower triangle to upper triangle, and; (b) histogram of differences. 

Correlation of Small Headways and Speed 

Considering the characteristics of driver behaviour (Chapter 2), it is usual to 

presume that at higher speeds, distances between vehicles increase. The theory 

is that drivers aim to keep a sufficiently large time-gap to the vehicle in front, 

for their perceived reaction time, in case of incident. In this section it is 

investigated if there is correlation between speed and small headways. Truck 

drivers, however, are more highly trained and are often in communication with 
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other truck drivers. This may counter the previous argument. To test this, 

Angers WIM data is processed for the speeds of the lead and following trucks 

whose headway is less than 1.5 seconds. The results are plotted in Figure 4.12, 

along with linear trend lines for ease of interpretation. It can be seen there is 

not a positive correlation as may be thought, but rather a negative correlation. 

However, the correlation decreases when one considers the difference in speed. 

As the strength of correlation is small, it is reasonable to ignore any relationship 

between speed and headway, and this assumption is made in this research. 
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Figure 4.12: Speed and small headway correlation for Angers. 
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Included Correlations 

Analysis of the WIM data for the French sites demonstrates that there are 

correlations that cannot be reasonably neglected. Grave (2001) has studied these 

sites in detail, and O’Connor (2001) has studied similar sites. In these studies it 

is found that, when axle weight is considered as a proportion of GVW, there is 

little correlation of axle-weights and GVW for 2- and 3-axle trucks. In contrast, 

Grave (2001), O’Connor (2001) and Bailey (1996) show and model the 

correlation between axle-weight and GVW for 4- and 5-axle trucks. This 

correlation is included in this work, as described in Section 4.4.1.  

Whilst GVW and length are not explicitly related in the generated traffic, the 

individual axle spacings are generated and their sum defines the length. As the 

axle spacings’ distributions are based on the measurements for the truck class 

(number of axles), the relationship between length and GVW is inherently 

catered for, though not explicitly. Further, as axle-spacings are modelled using 

tri-modal normal distributions, different forms of truck configurations within in 

each class are possible. 

4.3.2 Representation of time 

Temporal Variations 

That traffic is dynamic is evident. Allowing for this temporal variation of traffic 

is therefore an important feature of any traffic model. In the following, two 

forms of variation are discussed: short-term, such as variations from hour to 

hour, and; long-term, such as an annual increase in traffic volume. The major 

consequence of such variations for bridge loading is in the headways between 

trucks: increasing the number of trucks in a given time interval reduces the 

headways, thereby increasing the likelihood of observing two or more same-lane 

trucks on the bridge concurrently. 
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It is well known that traffic is generally increasing year-on-year (European 

Commission 2004). Clearly, there are also seasonal variations, weekly variations, 

and, of course, daily variations. To allow for each of these variations, sufficient 

data must be obtained to estimate their distribution, thereby permitting 

modelling. As can be seen from the description of the sites given previously, 

there is often insufficient data to do this. In fact, there is only sufficient data to 

obtain reasonable estimates of the daily variation in traffic flow. As such, in this 

work, only daily variations in traffic flow are accounted for. 

Hallenbeck (1995) studied temporal patterns of truck volumes in the United 

States. A significant finding is that weekend and weekday traffic exhibit 

different patterns. This is also the case for the sites studied in this work (Figure 

4.13). Clearly this is due to the prevalence of economic activity on weekdays. 

Hallenbeck also notes that some sites may not exhibit this trend, depending on 

geographic location relative to industrial centres (for example). Another 

significant finding is that for sites with high truck volume, seasonal variations 

are stable, whereas the converse is true for sites with low truck volumes. 
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Figure 4.13: Large headways by day-of-week for Auxerre WIM data. 
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Homogenous Days 

In the sites analysed for this work, traffic variations of periods longer than one 

day have insufficient data to form reliable estimates of their distribution. 

Therefore each day of simulation is based upon the same modelled variations: 

this is termed here as the ‘homogenous day’ model. That such a strategy is 

permissible, is based upon Hallenback’s (1995) findings. Other authors have 

adopted strategies based on these finding also, in particular Cooper (1995 and 

1997), Grave (2001) and Fu and Hag-Elsafi (1996). Notably, Crespo-Minguillón 

and Casas (1997) adopt a similar model but allow for variations with a period of 

one week. The homogenous day model accounts for the hourly fluctuations of 

traffic (with a period of one day) by using the average hourly flow measured for 

a given hour across all days of measurement. No account is made for daily, 

weekly, seasonal or annual variation in traffic. Such a model meets the 

requirements for ease of implementation and maximizes the use of available 

data. It is this model that is used in this research. 

The Simulation Calendar 

As will be shown in the following section, it is important for the data, upon 

which the extreme value analysis is performed, to be identically distributed. It 

would be unreasonable, in the light of the results presented above, to mix 

weekends and weekdays in the model due to their differing traffic properties. 

Some authors do, however, include weekend days in their studies (Ghosn & 

Moses 1985). In this work, only weekdays are modelled; therefore it is taken 

that 5 days of simulation represents one week of time. 

Getachew (2003) notes that traffic during the holiday period in Sweden exhibits 

different properties than usual. Traditional holiday periods are well established 

across Europe. Such holidays, as well as public-holidays, are breaks in the 
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‘economic calendar’. Therefore it is taken that the ‘economic year’ is equivalent 

to about 50 weeks of weekday traffic. In this study 5 days per week and 50 

weeks per year is considered to represent a calendar year, that is, 250 

‘simulation days’ per calendar year, representing the 250 working days per year. 

For studies in which larger periods of traffic are simulated, monthly maxima are 

sometimes used instead of daily maxima (refer to Chapter 8 for an example). In 

this case, in this research, the term ‘month’ represents 25 working days and 10 

such ‘months’ therefore represent a calendar year. This arrangement meets the 

requirements of ease of implementation whilst retaining a simple relationship to 

the calendar year. 

4.3.3 Basis for extreme value analysis 

Block Maxima Approach 

The extreme value theory (Chapter 3) used to analyse the results of the 

simulations in this work has two major branches, the block maxima approach 

and the peaks over threshold (POT) approach.  

The POT approach involves setting a threshold value and only recording those 

values which are greater than the threshold. An extreme value analysis may 

then be performed on the recorded values (Coles 2001a). 

The block maxima method takes the single (usually) maximum from a set 

period of measurement. Many such periods give a population of maxima upon 

which an extreme value analysis may be performed. A pertinent example is the 

maximum wind speed per year (Cook et al 2003) – refer to Coles (2001a) for 

many others. It is possible to use a more general approach, termed Order 
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Statistics, and consider the top 5 or 10 values for a certain period – see Coles 

(2001a) and Smith (1986) for example. 

The block maxima approach is wasteful of data; in environmental applications, 

for example, measurements are typically taken throughout the year and only 

lead to a single value (annual maximum). Another problem is that the second 

highest value in one block may be larger than the highest of another block; yet 

it is not accounted in the analysis. The POT approach avoids both of these 

problems. It, however, involves the choice of a threshold and the results of the 

method depend on the threshold choice. 

The statistical analyses in this work are based on the block maxima approach. 

This method is readily applicable to the problems presented. Extension and 

adaptation of the method is relatively easy for further analysis. For this method, 

a block size is required, the length of which may not be arbitrary as maxima 

must be drawn from an iid (independent and identically distributed) sample. 

Coles (2001a) describes the temperature problem; daily temperatures will vary 

with the season, violating the iid assumption; seasonal blocks will also violate 

the iid assumption as summer and winter temperatures are not identically 

distributed. 

Stationarity 

Statistically, a random process which has characteristics that do not alter with 

time is said to be stationary and has the property of stationarity. Traffic, and 

thus its load effects, is therefore a non-stationary process, both over the short-

term (hour to hour, for example) and the long-term. This may be seen from the 

discussion of Section 4.3.2. Clearly then, there may be problems with the 

modelling of the short- and long-term trends of traffic loading. 
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The extreme value theory applied in this work is based on the assumption of an 

underlying stationary process. For the theory to be strictly applicable then, this 

assumption must be met. A timeframe larger than the period of any variation 

incorporated into the traffic model meets this requirement - Figure 4.14. 

Therefore, as only hourly variations (with a period of one day) are included in 

this work, the stationarity requirement is met when a period of at least one day 

is chosen as the basis for further statistical analysis. 

 

Figure 4.14: Extreme value analysis: required block size for the block maximum 

approach to traffic variations for iid samples. 

In the long-term, the results of the statistical analysis are valid should the 

traffic characteristics not alter over the extrapolation period. Of course, this 

long-term stationarity is not met in practice. In this work, no allowance has 

been made to incorporate the effects of a change in the characteristics of the 

traffic over the long term. 

Application 

In this work, the problem of the choice of block size is analogous to that of 

Coles’ temperature: the solution to which states that a timeframe larger than 

the period of any variation incorporated into a model must be used. Variations 

allowed for in the traffic model have a period of one day. As these variations 

Minimum  
block size 

Time 

Tr
af

fic
V

ol
um

e Modelled traffic 
variations 



CHAPTER 4 – SIMULATION OF BRIDGE TRAFFIC LOADING 

117

affect the resulting load effect, the iid assumption is violated.  Therefore, any 

block size greater than, or equal to, one day does not violate the iid 

requirement. 

Some authors (Grave 2001, Cooper 1995, Ghosn & Moses 1985) have chosen an 

arbitrary number of ‘largest values’ (such as the ‘worst 100’) or an 

inappropriate time period (such as 2.4 hours). Such a procedure is inherently 

subjective but it also mixes the extreme value approaches. A threshold is 

artificially introduced (the lowest of the data set) whilst the block maxima 

distribution (GEV) is then used instead of the Generalized Pareto Distribution, 

which is appropriate for a POT analysis. Such a scheme is therefore not 

recommended. Other authors recognize this and adopt the daily maxima 

approach; for example, OBrien et al (1995), Moyo et al (2002) and Cooper 

(1997). 
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4.4 Modelling Bridge Traffic Loading 

4.4.1 Traffic characteristics 

The traffic model required to simulate bridge load effects must be consistent 

with the measured traffic at the site it claims to represent. Yet, it is important 

that there is the potential for variation from the measured traffic in the model; 

otherwise the model would only represent multiple sets of the same traffic. By 

using parametric statistical distributions, the traffic model may remain 

sympathetic to the measurements, yet retain the capacity to differ. 

Similarly to that of Grave (2001), the WIM data was analysed to determine the 

parameters of appropriate statistical distributions that characterize the 

measured traffic flow. The characteristics measured include the GVW, speed, 

headway, class of vehicle (based on the number of axles), flow rates, inter-axle 

spacing and the weight of each axle. The characteristics are modelled as 

described next. 

Class Proportions 

A truck’s ‘class’ is defined here to be its number of axles. The traffic model uses 

the measured proportions of each class of vehicle. No allowance for variation 

from the measured proportions is made in the total amount of traffic simulated 

– variation exists within the days of this traffic, however. 

Trucks with 6 axles or more are ignored. Grave (2001) shows that such trucks 

constitute a small proportion (≤ 1%) of the measured traffic. Getachew and 

OBrien (2005) suggest that the effect of this assumption is not significant. 

However, it is possible that actual extreme events contain such vehicles, but due 

to a lack of data, they are not included in this work. 
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Gross Vehicle Weight 

The distribution of GVW is known to be primarily bi-modal in nature (see 

Galambos 1979, for example). It is reasonably taken that this characteristic 

arises from peak frequencies of loaded and unloaded trucks. Figure 4.15 

illustrates the GVW PDFs for a single site, showing that of each class and 

direction. It is clear that each class of vehicle exhibits strong bi-modal 

tendencies and it is usual to model such distributions with mixture of normal 

distributions. Bi- or tri-modal fits are used – it is useful to include a third mode 

(which does not have a clear physical interpretation) to increase the accuracy of 

the representation. 
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Figure 4.15: Example of GVW PDFs for each class and direction of a site. 

Load effect is strongly affected by the shape of the GVW distribution and 

accurate fitting is therefore important. For this study, the method described by 

Grave (2001) was adopted: an iterative least-squares solution is found which 

gives special significance to the upper tails of the distributions by use of 

logarithmic plotting techniques. Such a method inherently entails a degree of 

subjectivity. 
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GVW is not considered as independent of direction (as may be seen from Figure 

4.15). This allows for differing characteristics that may be observed on highways 

surrounding industrial areas, for example. 

Axle Weights 

Axle weights, when expressed as a proportion of GVW, are correlated with 

GVW for 4- and 5-axle trucks (Bailey 1996, O’Connor 2001, Grave 2001). For 

2- and 3-axle trucks however, the correlation is not significant. Therefore, axle 

weights for these classes are modelled using bi- or tri-modal normal 

distributions. When generating the vehicle axle-weight characteristics, the axle 

weights are scaled appropriately to sum to the previously-generated GVW for 

that vehicle. 

For 4- and 5-axle trucks, the correlation between GVW and axle-weights cannot 

be ignored. This is due to the uneven distribution of weight amongst the axles 

of a truck as its GVW increase. The rear tandem or tridem carries a portion of 

the load that increases with increasing GVW and it is assumed that the load 

carried by each axle in such axle groups is evenly distributed amongst the axles. 

The 4- and 5-axle truck model is based on fitting distributions to the measured 

proportions of GVW carried by each individual axle or axle-group: 12 five-tonne 

intervals of GVW are used. For each interval, the distribution of the proportion 

of GVW carried by first and second axles and the axle group is measured and 

then fitted using the normal distribution. This method requires the GVW to 

have been generated in advance. 

As GVW is not independent of direction, and as axle weights are a function of 

GVW, axle-weight distributions are taken to be independent of direction. 



CHAPTER 4 – SIMULATION OF BRIDGE TRAFFIC LOADING 

121

Axle Spacings 

Axle spacings are measured for each class of vehicle. Bi- or tri-model normal 

distributions are then used to model the measurements as appropriate. In this 

way, sub-classes of vehicle geometries are allowed for. Axle spacings are 

considered to be independent of direction. 

Speed 

Measured speeds are modelled using a normal distribution for each direction, 

independent of vehicle type or GVW (see Section 4.3.1). 

Light Vehicles 

The WIM data recorded often excludes vehicles of GVW less than 3.5 tonnes, as 

explained in Section 4.2.3. The model described and used in this research 

therefore excludes these vehicles. While insignificant in terms of the weight such 

vehicles contribute, their exclusion means that they do not affect the spatial 

disposition of trucks. The headway model of Chapter 5 is limited to the study of 

truck headways and its results are based on measured truck headways only. 

By basing a headway model closely on the measured truck headways, the 

problems associated with the neglect of light vehicles are minimized. However, it 

may be that relationships existing in real traffic are lost in this way and there 

are no means to check this given the available data. More elaborate modelling 

based on comprehensive WIM data would be advantageous. 

Discussion 

In the modelling scheme described, the use of the normal distribution may not 

be ideal: its tails are unlimited in both directions, and there is no physical 

reason (and hence no theoretical justification) to expect normally distributed 

variables. Bailey (1996) uses the beta distribution for almost all of his traffic 



CHAPTER 4 – SIMULATION OF BRIDGE TRAFFIC LOADING 

122

characteristics, due to its flexibility and ‘boundedness’. There is no doubt that 

more advanced modelling techniques could be applied to the modelling 

explained, though more data would be required to make the increase in 

accuracy gained from such an increase in sophistication meaningful. 

4.4.2 Load Effect calculation 

Influence line theory is used extensively in both the measurement and 

simulation stages of this work. Primarily, for this research, influence lines are 

used in the simulation stage of the analysis to determine the load effects caused 

by the passage of trucks. Both measured and theoretical influence lines are used, 

as well as influence lines determined from finite element analyses. Bridge-WIM 

systems use calibration runs (with vehicles of known geometry and axle-weights) 

to determine the actual influence lines of a bridge. Several calibration runs are 

required and the average influence line is used as input to the Bridge-WIM 

algorithm. The use of these measured influence lines extends the applicability of 

the load assessment procedure from mere theoretical considerations, to 

considerations of the actual behaviour of the bridge under investigation.  

The software developed for this research requires an influence line to be 

specified by algebraic equations. For theoretical influence lines, the exact 

expressions are used whilst for measured influence lines, a number of quadratic 

or cubic polynomials are fit to segments of the influence line. 

Theoretical Influence Lines 

The theoretical influence lines used in this research are given in Table 4.2. 

Usually only influence lines 1 to 3 were post-processed statistically: they are 

deemed to represent a sufficiently wide variety of shapes such that sensitivity of 

load effect to the influence line shape alone may be detected 
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IL Index Description Graph 

1 Bending moment at the 

centre of a simply-supported 

span. 

2 Bending moment over the 

central support of a two-

span bridge. 

3 Right-hand support shear 

force for a simply-supported 

span. 

4 Left-hand support shear 

force for a simply-supported 

span. 

5 Right-hand support shear 

force for a two-span bridge. 

6 Left-hand support shear 

force for a two-span bridge. 

Table 4.2: Theoretical influence lines used. 

Influence Lines for the Mura River Bridge 

The influence lines for mid-span stress of the five longitudinal girders of the 

Mura River bridge study are based on a calibrated finite element model of the 

bridge rather than WIM measurements. Each girder has an influence line for 

each lane of travel and quadratic equations are fit for use in the simulations. 
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Figure 4.16 shows the general arrangement of the structure; Figure 4.17 gives 

the influence lines for the five girders for each lane of travel. As the driving 

lanes are not symmetrically located, the influence line for Beam 1, Lane 1 is not 

exactly the same as its symmetrical counterpart, Beam 5, Lane 2. Nonetheless, 

the difference is one of scale, and this fact was exploited in the algebraic 

representation of the influence surface to minimize the complexity of the model. 
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Figure 4.16: General arrangement of Mura River bridge. 
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Figure 4.17: Influence lines for the Mura River bridge. 
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The quality of the fits to the finite element influence lines may be seen from 

Figure 4.17: these lines are drawn in black on the figure but are mostly obscured 

by the fits. Slight differences may be seen at the peak of Beam 5, Lane 2 and 

Beam 3, for both lanes, for example. These differences are deemed acceptable 

and have been shown to have a negligible impact on the results by static 

comparison of the finite element model results with the results of the load effect 

algorithm used in this research 
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4.5 Simulating Bridge Loading 

4.5.1 Introduction 

With the foundations laid in the previous sections of this chapter, the ‘simulate’ 

phase of the bridge traffic load calculation is discussed. Fundamentally, it is a 

Monte-Carlo simulation process that is used to generate artificial traffic which is 

used to calculate its associated load effects. Rubinstein (1981) gives a thorough 

introduction to the technicalities of the subject.  

The software tools developed to generate random traffic and calculate the load 

effects therefrom are described in this section. Also described is software 

developed for other aspects of the research. Table 4.3 outlines the function and 

language used by the main tools developed. The first three programs are the 

most important to this work. Appendix A outlines the use of the programs. 

Also given in Table 4.3 is the language used for the respective program. 

Different environments and languages were used as appropriate to the problem 

under study. In particular, the object-oriented programming approach was 

adopted for the large-scale numerical calculations. This is explained in more 

detail in Section 4.5.3 after the description of the random number generation 

process used for this work. 
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Name Purpose Language 

GenerateTraffic Generation of synthetic traffic file. C++ 

SimulTraffic 
Static analysis of loading events from a 

traffic file. 
C++ 

AnalyseEvents Statistical analysis of load effect data. C++ 

ReadTrafficIn 
Statistical analysis of the traffic 

characteristics of a traffic file. 
C++ 

MCSim 
Monte Carlo simulation from many 

distributions. 
C++ 

TruckBrowser 
Visualisation of the contents of a traffic 

file, truck by truck. 
Visual Basic 

AnimateEvents Animation of the loading events. Visual Basic 

S.of.T.onBridges Visual interface for GT, ST and AE. Visual Basic 

MultiMLE 
Maximum likelihood fits of many 

distributions to a data set. 
Matlab 

PredLike 
Predictive likelihood for a single data 

set. 
Matlab 

MMPredLike 
Predictive likelihood for composite 

distribution statistics. 
Matlab 

MultiVarEVT 
Analysis of total and static extreme 

load effect (Chapter 8). 
R

UpDateGraphs 
Interface for the amalgamation of 

results in many Excel files. 
Excel VBA 

Table 4.3: List of main software applications developed during this research 
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4.5.2 Random number generation 

Generating the traffic requires Monte-Carlo simulation, the basic tool of which 

is a (pseudo-)random number generator (RNG). The prefix ‘pseudo’ indicates 

that the use of a computer is an inherently deterministic process and resulting 

deviates can only approximate true randomness (Knuth 1997). Rubinstein 

(1981) describes the importance of random number generation in Monte Carlo 

simulation and the fundamentals of computer-based RNGs. 

The RNG initially used was ran2() of Numerical Recipes in C (Press et al 

1993). This RNG takes the minimal sufficient RNG of Park and Miller (1988) 

and modifies it with the Bays-Durham shuffle. However, as the work herein 

progressed, it was discovered that there were some inconsistencies with the 

results got from this algorithm: numbers very close to unity were essentially 

deterministic (though the machine epsilon – a measure of the numerical 

precision of a computer – used is 2.2×10-16).  In generating sequences of maxima 

from a parent distribution, it is essential that numbers close to unity are 

random also. Further, as the number of trucks capable of being generated 

increased (to around 8.5×106), problems with period exhaustion and serial 

correlation became more likely (Press et al 1993). 

To alleviate any possible problems with the RNG to be used, the virtual 

pseudo-random number generator described by L’Ecuyer et al (2002) was 

adopted, and all work presented herein is based on its use. This generator gives 

excellent results, even for values very close to unity. This is due to its double 

precision methodology. It can have multiple separate streams, each of which is 

based on the multiple recursive generator MRG32k3a (L’Ecuyer 1999) which 

has a period of 257; the seeds of each stream are separated by 2127 steps. This is 

useful when multiple random deviates are required: for example, the Box-Muller 
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transform for normal deviates requires two uniform deviates (Box and Muller 

1955). In this case therefore, two separate streams of L’Ecuyer’s RNG are ideal. 

This RNG is supported by published tests of its randomness (L’Ecuyer 1999, 

L’Ecuyer et al 2002). 

4.5.3 Object-Oriented Programming 

The three main programs developed for this work, GenerateTraffic (GT), 

SimulTraffic (ST) and AnalyseEvents (AE), are written using an object 

oriented (OO) programming. This method is different to traditional procedural 

programming as virtual ‘objects’ are coded to behave in ways similar to their 

real-life counterparts. More powerfully, abstract concepts may be used.  

This work has mainly exploited the encapsulation principle of object oriented 

programming (Stroustrop 1997). Encapsulation allows different ideas, functions 

and data to be made distinct from the rest of the program – a ‘black box’ object 

or ‘class’. The program uses the service that the class offers, without access to 

its inner details. This ‘modularization’ of the code has a number of advantages: 

• Extension: problems usually associated with extending a piece of procedural 

code (trivially, difficulties in naming variables, for example) are avoided. 

Therefore it is easier to extend without affecting the logic of other parts of 

the program – for large programs this is a significant advantage. 

• Reuse of code: it is only ever necessary to write the code for a certain 

feature, function, or class once – the class can be instantiated (declared) as 

often as required, and in many different guises in a single program or across 

several programs (such as is the case here). This is not the case with 

procedural programs in which more code must be added to each program. 

As an example of the approach, the virtual object for the truck, a fundamental 

element in this work, is explained. The properties of the physical truck are 
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programmed into the CTruck class (for example, number of axles, GVW etc.). 

CTruck only allows the rest of the program access to these class members 

through an appropriate interface – this reduces logic errors in the program. In 

addition, CTruck has a number of actions it can perform; termed as class 

functions. For example, CTruck returns its time of arrival on the bridge, writes 

itself to file, or deletes itself when asked by an external function. Critical to this 

research, the CTruck class is treated as a single piece of data and (large) arrays 

(C++ STL <vector> class) of such objects are therefore used to contain the 

artificial trucks in the computer memory. As a fundamental object for all of the 

software required for this research, the CTruck class is used in all the programs. 

As an example of an abstract class, the CEffect class encapsulates all the 

information pertaining to a crossing event for a particular influence line. It 

includes the comprising CTruck objects; the start time; truck arrangement at the 

instant of largest load effect; the maximum load effect and the (IL) index 

number of the load effect. Methods attached to the CEffect class allow it to 

write itself to a file, as well as answer any ‘queries’ regarding its contents. For a 

single crossing event, there are therefore 15 (the number of influence lines) 

instances of the CEffect class. These are, in turn, stored in another container 

class called CEvent. Therefore, in this application of CEvent the trucks are 

similar across all of the CEffect class members. As an example of the re-use of 

code possible, a different application of CEvent holds the CEffect variables for 

the daily maximum (for example) load effect for each of the influence lines. In 

this application of CEvent, the trucks for each CEffect object will be different, 

reflecting the different loading events critical for different influence line shapes. 

One further significant benefit is that use of the OO approach allows proper 

integration of the C++ Standard Template Library (STL) – a library of 
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standard functions. Incorporating these efficient algorithms and structures 

allows the code to be more efficient in terms of memory and processing speed, 

easier to read and maintain, portable, and more robust.  

4.5.4 GenerateTraffic 

The generation of synthetic traffic is performed with the GenerateTraffic 

program. This program consists of the classes shown in Table 4.4, shown along 

with the purpose of each. It is to be noted that this program draws a lot of 

functionality from the C++ STL (Stroustrup 1997). The main alogorithms of 

this program are similar to those of Grave’s (2001) program. 

Class Name Function 

Main.cpp Main function loop. 

CGlobals Communicates global variables to classes. 

CFilesIn Reads the traffic characteristics (model) input files. 

CRngStream 
Uniformly-distributed random number generator of L’Ecuyer 

et al (2002). 

CDistValues 
Changes uniform random deviates into deviates of other 

distributions using the inversion method (Rubinstein 1981). 

CGenTruckFlow 
Generates each of the traffic characteristics and assembles 

the CTruck variables. 

CTruck The basic truck object. 

CTruckGroup A collection of CTruck objects with some functionality. 

Table 4.4: Outline of the GenerateTraffic program. 
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4.5.5 SimulTraffic 

The SimulTraffic program passes the (generated or measured) traffic across a 

number of bridge lengths and calculates the load effects for each of the influence 

lines outlined previously. The function of this program is similar to that of 

Grave (2001). The program structure is given in Table 4.5. 

Class Name Function 

Main.cpp Main function loop. 

CGlobals Communicates the common variables to classes. 

CAnalyseEvents 
Post-processes the collection of CEvent objects and 

outputs results. 

CCalcEffect 
Returns load effects from influence lines based upon 

axle weight, axle position, lane number and bridge 

length. 

CCrossEvent 
Carries out the analysis of a significant crossing event 

given the comprising trucks and bridge length to be 

analysed. 

CEffect 
Stores information for a single load effect from a 

crossing event (refer to Section 4.5.3). 

CEvent 
The collection of CEffect for all load effects from a 

single crossing event, or, the collection of post-

processed CEvents from CAnalyseEvents. 

CTestCrossingEvent 
Sequentially analyses the truck stream to determine 

the presence of a significant crossing event. 

CTruck The basic truck object 

CTruckGroup 
A collection of CTruck variables with some 

functionality 

Table 4.5: Outline of the SimulTraffic program. 

 



CHAPTER 4 – SIMULATION OF BRIDGE TRAFFIC LOADING 

133

The traffic file output from GenerateTraffic (described in Appendix A) is read 

into SimulTraffic. When the traffic files are large (600-700 MB), this can 

create problems with memory on 32-bit machines. In this work, up to 5 years of 

traffic (1250 days) can be generated for Auxerre using GenerateTraffic.

However, SimulTraffic can only cater for 4 years of Auxerre traffic because it 

must store the results from each crossing event as well as the original traffic file. 

Profiling of the code has shown that it is very efficient. The 32-bit architecture 

of the computers used means that the finite number of RAM addresses possible 

causes the limitations observed. Previous work (Grave 2001, O’Connor 2001) 

did not approach this limitation of 32-bit machines. 

To minimize processing, only Significant Crossing Events (SCEs) are processed. 

These are defined as any Multiple Truck Presence Event (MTPE) or the 

occurrence of any truck with GVW over 40 tonnes. The program 

(CTestCrossingEvent) chronologically searches the truck traffic for such SCEs. 

When one is found, the trucks involved are passed to an algorithm 

(CCrossEvent) that uses all the influence lines programmed (CCalcEffect) to 

derive the induced load effect. The trucks are passed across the bridge in 0.02 

seconds steps (less than 0.45 m for a speed of 80 km/h) as recommended by 

Grave (2001); at each step each load effect is calculated – this is in comparison 

with 0.2 seconds used by Bailey (1996), for example. The maximum value of 

each load effect is kept for further analysis, as well as the time it occurs at, and 

the front axle position of the first truck on the bridge. 

Following the analysis of all the trucks (and the associated SCEs), a large 

collection of events (CEvent) is stored. The memory requirement for this is 

around 25% of the size of the traffic file input. Therefore, some initial post-

processing of the results is done prior to outputting to file. Though strictly part 
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of the statistical analysis of the loading events, it is necessary to do this 

processing here due to the time and storage space otherwise required. Daily 

maximum and (as appropriate) monthly maximum load effects are output for 

each load effect and each day/month (see Section 4.3.3). This output then forms 

the input for the statistical analysis program AnalyseEvents.

4.5.6 AnalyseEvents 

The statistical methodologies of Chapter 6 are incorporated into this program. 

Reference to this chapter is required for more information regarding the 

functions that the program performs – outlined next. The classes used in this 

program are given in Table 4.6. 

The events read in from SimulTraffic output (CReadEvents) are separated for 

each load effect of interest. For reasons outlined in Chapter 6, it is necessary to 

analyse each of the types of MTPE, that is, whether it is a 2-, 3-truck event 

etc., separately. This means that, for each load effect, for each span, there are 

(normally) up to 4 to 5 different data vectors which are fitted (CGEV) using the 

GEV distribution (see Chapter 3). These fits are stored (CGEVanal) and then 

used in further statistical processing (CMixMech). For each load effect and each 

bridge length, the program outputs the predicted lifetime load effect for 28 

different return periods (1 to 250 000 years, for completeness). Also output is 

information about the data and the fits that can be further processed to obtain 

illustrations of the fits and the extrapolation process. Further, the program 

outputs the input data for the analyses described in Chapter 7. 
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Class Name Function 

Main.cpp Main function loop. 

CReadEvents 
Reads the events files output from SimulTraffic, performs 

various interface functions for the other objects and writes the 

effects of further interest to file. 

CEffect 
Stores information for a load effect from a crossing event 

(Section 4.5.3). 

CEvent 
The collection of CEffect for all load effects from a single 

crossing event, or, the collection of post-processed CEvents 
from CAnalyseEvents. 

CTruck The basic truck object. 

CPredExtrem 
Using CMixMech, calculates and writes the extrapolation 

results based on the input data. 

CMixMech 
Performs composite distribution statistics and outputs data 

for diagnostic plots. 

CGEVanal 
Stores the parameters, variance-covariance matrix and the 

data for a single GEV fit. 

CGEV Fits a GEV distribution to a given data vector. 

CSimplex Nelder-Mead minimization (Chapter 3) – used by CGEV. 

CKStest Performs a Kolmogorov-Smirnov test on fits to data. 

CMatrix A matrix class, used in the CSimplex class. 

CDistValues As per GT – used for bootstrapping in CMixMech.

CRand 
Returns uniform random deviates using ran2() of Numerical 

Recipes in C (Press et al 1993) to CDistValues.

Table 4.6: Outline of the AnalyseEvents program. 
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4.6 Summary 

This chapter has presented the means by which load effect data is obtained for 

a statistical analysis. Site measurements using WIM stations are described and 

the elements that may contribute to inaccuracies are mentioned. The use of the 

WIM measurements is also presented: traffic characteristics are analysed and 

statistically modelled to enable Monte Carlo generation of artificial traffic sets 

to extend the period of the original data. The duration of site measurements 

required is also noted as a possible source of inaccuracy in the process; however 

the methodology derived herein remains applicable. The use of the traffic files to 

calculate load effect data is also presented. It is shown that influence lines 

(either measured or theoretical) are used, in conjunction with the traffic files, to 

derive the load effect data for further use.  

The programming approach adopted for this research is presented along with 

the main programs used in this work. It is shown that this enables large periods 

of traffic to be simulated which has benefits for the accuracy of the predictions 

derived therefrom. The functions and structures of the main programs are 

outlined by describing their constituent classes. The function of each of these 

classes is described and some detailed examples are discussed. Also, the main 

statistical analysis program is presented; the detailed operations of which are 

left to Chapters 6 and 7. 
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“Statistics will prove anything, even the truth” 
 -Lord Moynihan 
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Chapter 5 - HEADWAY MODELLING 

5.1 Introduction 

5.1.1 Motivation 

Load effects for the bridge lengths of interest in this research (20–50 m) are 

assumed to be governed by free-flowing traffic (Bruls et al 1996), once 

consideration has been given to dynamic effects of truck-bridge interaction. If it 

were not for the dynamic interaction, it is likely that such bridge lengths would 

instead be governed by traffic jam scenarios, as is the case for longer length 

bridges (Bailey 1996, Bruls et al 1996, O’Connor 2001, Hayrapetova 2006). For 

bridge loading purposes, the difference between these two forms of traffic (with 

respect to static load effect only) is the smaller gaps between the vehicles. It is 

for this reason that correctly modelling the gaps that occur in free-flowing 

situations is important in short- to medium-length bridges. It seems reasonable 

that more trucks at smaller gaps result in larger lifetime load effect values. 

Accurate headway modelling is also essential in understanding the types of 

events that dictate the lifetime critical load effect. Some authors (e.g., Nowak 

and Hong 1991, Nowak 1993, Ghosn and Moses 1985) have only considered 2-

truck meeting events for such cases. For short-length (20 to 30 m) bridges, the 

2-truck meeting event is indeed important and is likely to strongly influence the 

bridge design. However, crossing events comprising more than two trucks are 

also possible and should not be ignored. Accurately modelling the headway 

could mean that same-lane trucks feature more frequently in the critical 

crossing events. As will be shown, the headway assumption has a significant 

effect on the number and type of loading events recorded. 



CHAPTER 5 – HEADWAY MODELLING 

139

5.1.2 Basis 

In this work, the terminology used is: 

• Headway: the time or distance between the front axle of a leading truck 

and the front axle of a following one (Thamizh-Arasan & Koshy 2003);  

• Gap: the time or distance between the rear axle of the front truck and 

the front axle of the following truck; 

• AHF: Average Hourly Flow – the average truck flow for a given hour, 

across all the days of measured traffic; 

• MGC: Minimum Gap Criterion – a criterion governing the minimum 

gaps between lead and following trucks used in headway models; 

• HMT: Headway Modified Truck – a truck that has had its headway 

modified due to the imposition of an MGC. 

 

Headway and gap are related by the length of the lead truck. To assume too 

small a gap may be quite conservative whereas an excessively large gap 

effectively removes 3- and 4-truck meeting events from consideration. In this 

work, flows are broken into hourly intervals based on the work by O’Connor 

(2001), in which the effect of the period for the flow intervals (1, 3, 6 and 24 

hours) on the characteristic extreme load effects is examined. He concludes that 

flow periods based upon hourly intervals give minimum deviations of 

characteristic load effect on average. 

Accurate modelling of measured headways implicitly allows for the front and 

rear truck overhangs. Hence, no account has been made for these overhangs. 
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5.2 Analysis of Existing Headway Models 

Existing headway models are presented in Section 2.3.2 in the context of the 

background literature to this research. The most recent of such models is tested 

to assess the sensitivity of the load effect results to the headway model later in 

this chapter: the normalized headway model of Crespo-Minguillón and Casas 

(1997). 

5.2.1 Minimum Gap Criteria 

The normalized headway model, when combined with a velocity distribution, 

results in a proportion of truck arrangements that violate the physics of traffic 

flow: simulated trucks occupy the same location, in the same lane, at a given 

instant. Crespo-Minguillón & Casas (1997) acknowledge that this has been an 

important source of error in previous work. It is therefore a central feature of 

headway models to adopt a Minimum Gap Criterion (MGC) to preclude such 

problems: Grave (2001), Bruls et al (1996), and Flint and Jacob (1996) all 

adopted a 5 m MGC; Bailey (1996) used a 5.5 m MGC which corresponds to a 

0.25 second gap at a speed of 22 m/s (~80 km/h), and; Crespo-Minguillón and 

Casas (1997) do not specify what criterion they used, though they comment on 

allowing the simulated vehicles to react to vehicles in front. Such approaches are 

termed Minimum Gap Criterion as any vehicle combination that violates the 

criterion is modified in such a way that the criterion is met throughout the 

duration of the bridge loading event. In any crossing event, there are four 

critical cases in which the physics of traffic may be violated – as shown in 

Figure 5.1. 
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Figure 5.1: Critical truck overlapping scenarios: t is the arrival time; V is truck 

speed; L is truck length; subscripts i and 1i − denote the current and previous 

trucks respectively; gL is the MGC; and BridgeL is the bridge length. 

The presented equations stipulate the time of arrival for the current truck, such 

that at its critical point (start or end of the crossing event) the MGC will be 

exactly met. It is in this manner that MGC-based headway models are made 

adhere to the physical limitations of the traffic process. The datum chosen for 

the arrival times is the right-hand side of the bridge. As the trucks are 

generated, their headway-velocity properties are checked against the 

requirements shown in Figure 5.1. Should a combination be found that violates 

the MGC, the time of arrival of the truck is modified using the appropriate 
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equation from Figure 5.1. The velocities of the trucks are not altered. In this 

work, such trucks are termed headway modified trucks (HMTs). 

O’Connor (2001) and Bailey (1996) note that the shifted exponential 

distribution may also be used. In this case, no modification is needed, as there 

are no generated combinations that violate the MGC. However, this does not 

remove the subjectivity of the arbitrary choice of minimum gap and 

consequently this approach is not faithful to actual (measured) traffic. 

5.2.2 Effect of Minimum Gap Criteria on headway distribution 

In carrying out the process of checking the truck headway-velocity 

combinations, and modifying for the MGC when required, the measured 

headway distribution is not adhered to in the resulting generated traffic stream. 

In fact, all of the HMTs are effectively ‘bunched’ at the MGC-governed 

headway. 

Figure 5.2 shows an example of the effect of imposing MGCs on generated 

headways in which 50 000 random headways, as defined by the normalized 

headway model, are generated for various flows. The PDF of these headways is 

shown as a black dashed line in each of the plots. For three MGCs, these 

random headways are checked and modified as described previously. The 

resulting histogram of headways, for the three MGCs is shown in each plot. As 

expected, ‘bunching’ of the modified headways at the MGC has severely 

distorted the headway PDF. It is to be noted that only headways under 4 

seconds are illustrated.  
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Figure 5.2: Effect of MGC modification to headway distribution for a flow of 

100 trucks/hour. 

5.2.3 The effect of Headway Modified Trucks 

To assess the impact of the headway modifications previously outlined on load 

effect, four runs of 10 weeks simulation each are carried out based upon the 

Angers data. Only the events corresponding to a daily maximum (DM) load 

effect are processed for further use because these events form the basis for the 

statistical analysis. Space-time graphs (Gazis 1974) are used to understand the 

headways that are significant for bridge loading events (Figure 5.3 for example). 
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It is found that the duration of the daily maximum events varies for different 

load effects and spans but that the duration of most daily maximum events is 

around 4 seconds. However, when headways are required, due to the occurrence 

of same-lane trucks, they are smaller than 4 seconds – the total duration of the 

event. Such examinations of the critical events led to the general realization 

that it is headways under around 4 seconds that are most likely to contribute to 

the critical bridge loading events. The normalized headway model previously 

described is not focused on this important interval of headway. 
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Figure 5.3: Typical space-time graph: 50 m bridge length, Load Effect 1. 

The simulations are further analysed to determine the influence of the HMTs 

upon the loading events. It is found that, out of a total population of just over 

654 725 trucks, 12 708 are HMTs – 1.9% of the population. However, HMTs 

constitute an average (for different load effects and bridge lengths) of 46.3% of 

the significant crossing events population. Of course, by definition, HMTs will 

have small headways and are thus liable to feature more than an ‘average’ 

headway truck. However, it is clear then that any inaccuracies in the headways 

generated may have significant impact on the loading events. It is with this 

motivation that the following headway model is proposed. 
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5.3 The Headway Distribution Statistics Model 

5.3.1 Headways in a European context 

Data sets from the A196, Angers, Auxerre and the Hrastnik Bridge sites are 

analysed for the occurrence of trucks with headways less than 4 seconds. The 

hourly mean flow (mean flow in an hour) for each hour of measurement is 

calculated, as is the incidence of trucks with headways less than 4 seconds for 

each hour. 

The background literature (Section 2.3) has demonstrated that traffic is often 

approximated as a Poisson arrival process. According to this model, the number 

of trucks with headway less than 4 seconds (N4), as a function of flow, is: 

 4 1 exp 4
3600

QN Q   = ⋅ − − ⋅    
(5.1) 

The curve defined by this model is shown in Figure 5.4 along with the processed 

data, as described previously. As the Poisson model is almost quadratic in this 

range, quadratic trend lines are fit to the data and shown for comparison. 

There are several important points to be elicited from the relationships shown in 

Figure 5.4: 

• Truck densities conform well to the Poisson assumption, though there is 

considerable variation about the model – especially for lower flows; 

• Driver behaviour appears to be quite similar across Europe;  

• The Lane 1 data from Angers does not appear to follow similar trends; 

this may be due to the road geometry at the site. For example, as it is a 

Route Nationale, access junctions can result in bunching of traffic as a 

vehicle slows to exit, or enters the traffic stream. 
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(b) Magnified view of lower flows; 

Figure 5.4: Small headways at various European sites (Li refers to lane i). 

It appears that at a macroscopic scale at least, headways in the range of interest 

are quite similar in different (European) countries. This is surely due to similar 

driver behaviour, regardless of country. Therefore any methodology may be 

reasonably specific and can expect to be applicable in a broad range of cases, 
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given sufficient data. Also, it may be possible to combine all the headway data 

into one model applicable throughout. However, exceptions such as the Angers 

Lane 1 data are always possible, and it is important not to draw too general an 

inference from a data set representing only one week of traffic from each site. 

In the following development of a headway model, the weekday data from the 

A6 site, near Auxerre, is analysed to form the basis of the methodology. The 

characteristics of the site are described in Chapter 4. This headway model is 

based on the Headway Distribution Statistics measured at the site and is 

hereafter referred to as the HeDS model. 

5.3.2 Investigation of very small headways 

Very small headways are investigated to examine if driver perception of safe 

distance rather than traffic flow determines the headways (Koppa 1992, 

Lieberman & Rathi 1992). Up to a headway of 1.5 seconds, the correlation 

between hourly flow and headway is weak as can be seen from Figure 5.5. 

Hence, for such headways, it is reasonable develop a distribution of headway 

that is independent of flow. 

To model the headways for less than 1.5 seconds, irrespective of flow and 

direction (because driver behaviour is surely independent of direction), the 

outside lanes of the Auxerre traffic file are processed for: 

• The total number of trucks, 31 842; 

• Each headway less than, or equal to, 1.5 seconds, i.e. measured data; 

• The number of measured headways that occur less than, or equal to, 

increasing values of headway, as given in Table 5.1. 
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Figure 5.5: Occurrences of headways less than 1.5 seconds by flow. 
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Table 5.1: The number, N, of headways occurring less than a specified headway, 

h, in measured Auxerre traffic. 

Two forms of headway distribution emerge: 

• The distribution of headways less than, or equal to, 1.5 seconds, ( )1.5F ⋅ ;

• The distribution of all headways, ( )TotF ⋅ , though data is only gathered 

for headways in the interval of interest [ ]0,1.5 .

The empirical distribution function (Section 3.2.3) for the measured data, 

( )1.5F ⋅� , is shown in Figure 5.6 (main plot). There is a change in the curvature of 
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the distribution at headway of about 1.0 seconds. It is therefore considered 

appropriate to use two fits: one for 1.0h ≤ seconds, and another for 1.0 1.5h≤ ≤ .

From Table 5.1 and the total number of trucks, ( )1 1.5 0.02057TotF − = . This could 

be used to relate the probabilities of ( )1.5F ⋅� to those of ( )TotF ⋅ , but it is found 

that due to over-fitting of the large data set, the interface of the fits at 1.0 s is 

problematic. Therefore, using the data from Table 5.1, two quadratic fits are 

made, and are shown in the sub-plot of Figure 5.6: 

 ( )
2

1 1 1
2

2 2 2

for 0 1.0
for 1.0 1.5Tot

a h b h c h
F h

a h b h c h
 + + ≤ ≤

= 
+ + ≤ ≤

(1.2) 

Quadratic-equation, least-squares fits are used, as no probabilistic model could 

be justified as being more appropriate than any other. In the main plot of 

Figure 5.6, these quadratic fits are plotted (scaled appropriately) and may be 

compared with the empirical CDF: the comparison is quite good. 
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Figure 5.6: Cumulative distribution functions (for all flows combined) and 

quadratic fits for headways less than 1.5 seconds. 
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5.3.3 Headways between 1.5 and 4 seconds 

It is not reasonable to assume that there is no correlation between headway and 

flow for headways between 1.5 and 4 seconds as is done for smaller headways. 

Instead the headway model must allow for differences due to varying flow. The 

hourly mean truck flows measured during the 5 working days of measurement at 

the Auxerre site are shown in Figure 5.7, by day, for both directions. Also 

shown is the AHF for each hour and each direction. 
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Figure 5.7: Daily variation and AHFs for both directions at Auxerre. 

The AHF is determined from the flows that occur in a given hour across all of 

the days of data. It can be seen that the AHF closely follows the overall trend 

of the other days. This figure also illustrates one of the problems involved in site 

measurement: it can be seen that there are no measurements for Wednesday, 
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Direction 2, for 1500 and 1600 hours. That there is a small measurement for 

1700 hours suggests that recording is temporarily stopped at 1500 but restarted 

close to 1800 hours. No adjustment is made to the AHF to account for this, 

though rational adjustment is clearly possible: interpolation based on the mean 

relationship exhibited in the other days, for example. 

Figure 5.8 shows the flow histograms for both lanes separately, and the site as a 

whole; for both the measured flows and the calculated AHFs. The flow, and 

hence the headway distribution, varies considerably by hour. This has 

implications for the headway modelling: it would not be appropriate to assume 

a form of ‘mean site flow’ for the derivation of a headway model. This is in 

keeping with existing literature on the subject. 
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Figure 5.8: Histograms of measured Auxerre flows and resulting AHFs. 
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To accurately model the headway-flow relationship measured, for each hour of 

each day and direction, headway data and the corresponding mean hourly flow 

are noted. For each of the hours recorded, individual headway distributions are 

possible. However, there are two reasons not to use such distributions: 

• It is unlikely that every AHF will have a corresponding flow with its 

associated headway distribution, regardless of the hour; 

• It is unlikely that a single hour would have sufficient data for robust 

modelling. 

Therefore, to maximize the use of the WIM data, yet to maintain faithful 

adherence to the WIM headway distributions, data from different hours is 

categorized by hourly flow in intervals of 10 trucks/hour. This is as shown in 

the histograms of Figure 5.8. Cumulative distribution functions (CDFs) of 

headway are then calculated for each interval. These CDFs for headway are 

illustrated in Figure 5.9. There is a general trend of increasing cumulative 

probability with increasing flow. There is some variation about this trend which 

is likely to be the result of the size of the data set. For the flow intervals for 

which there is a corresponding AHF (see Figure 5.8), the measured CDF is fit 

using quadratic equations (as previously). The fits are shown in Figure 5.10 and 

the parameters are given in Table 5.2. 

Figure 5.11 shows the error in the fits described – expressed as a percentage of 

the measured probability – for the headway and flow under consideration. 

Immediately apparent is the flatness of large areas of the figure – corresponding 

with little error. However, it is also apparent that there are much larger 

percentage errors at low headways. For high flowrates, the error is about +38%; 

for low flows the error is about -17%. These high percentage errors are caused 

by the very small values of probability at low headways. 
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Figure 5.9: WIM headway CDFs corresponding to AHFs, categorized by flow 

increments of 10 trucks/hour. 
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Figure 5.10: Modelled headway CDFs categorized by flow. 
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Flow a b c Flow a b c

70 -0.004 0.055 -0.067 150 -0.005 0.080 -0.083 

80 -0.004 0.050 -0.049 160 -0.005 0.092 -0.105 

90 0.002 0.021 -0.014 170 -0.005 0.087 -0.097 

100 -0.004 0.065 -0.069 180 0.002 0.052 -0.058 

110 -0.003 0.055 -0.060 190 0.003 0.045 -0.063 

120 -0.001 0.049 -0.053 210 0.000 0.068 -0.078 

130 0.000 0.050 -0.058 230 -0.006 0.118 -0.141 

140 -0.005 0.081 -0.086     

Table 5.2: Parameters of quadratic equations of CDFs by flow. 
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Figure 5.11: Percentage error of modelled to WIM headway CDFs. 

Figure 5.9 shows that there is a relationship between cumulative distribution 

and flow for a given headway. Exploiting this through the use of a bi-variate 

quadratic surface fit would simplify the headway model. However, such a fit 

would yield larger errors than that of the individual flow rate fits explained 

above. As an example of such a procedure, a quadratic surface is fit to the 

measured CDF surface of Figure 5.9. The equation used is: 
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( ) 2 2 2 2,f x y Ax By Cx y Dxy Exy Fx Gy H= + + + + + + + (1.3) 

The parameters of the fit obtained by least squares evaluation are: 

 
-0.00512 5.343 - 07 1.819 - 05 -5.124 - 07
0.00038 0.02229 0.00048 -0.01641

A B E C E D E
E F G H
= = = =
= = = − =

(1.4) 

The fit obtained from this method is shown in Figure 5.12. The fit obtained by 

this method is not used in the work that follows, due to the higher errors 

observed when compared with the individual flow fits. However, given a larger 

data set, or more sites, the bi-variate fit method presented could be the superior 

model due to its ease of implementation and generality of application. 
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Figure 5.12: Bi-variate model of the headway-flow CDF relationship: (a) 

measured; (b) modelled; (c) both plotted together, and; (d) the differences. 
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5.3.4 Headways greater than 4 seconds 

For bridges up to 50 m long, headways in excess of 4 seconds are not critical as 

at a typical highway speed of 80 km/h, a truck travels 89 m in this time. 

Therefore, such headways do not need to be modelled as accurately as smaller 

headways, and the normalized headway distribution of Crespo-Minguillón and 

Casas (1997), previously explained, is used for headways in this region. 

5.3.5 Checks on generated headways 

Checks are made to the generated headways so that it may be confirmed that 

physical limitations are not violated. The lack of correlation between speed and 

headway (Section 4.3.1) allows the following check: 

Check 1: For same-lane trucks concurrently present on the bridge, the speed of 

the following truck is made that of the lead truck, such that the 

headway is maintained all the way across the bridge.  

Hence, the following truck cannot catch up with the lead truck and the 

measured headway statistics are maintained during the crossing. About 2.9% of 

trucks are modified in this manner for a typical Auxerre simulation. One further 

verification check is made on the generated headways: 

Check 2: If a truck has been adjusted in Check 1, the distance between the 

rear axle of the front truck and the front axle of the following truck 

is examined; if it is less than 1 m a warning is given.  

No generated headway-velocity combination fails the second check: evidence 

that the proposed headway model is sympathetic to the measured traffic 

stream. That is, physical limitations are maintained, without arbitrary nose-to-

tail distance stipulations. 
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5.4 Comparison of HeDS with other Methods 

5.4.1 Simulation background 

To investigate the proposed headway model, bridge lengths of 20, 30, 40 and 50 

m are considered. In each case, three load effects are considered: 

• Load Effect 1: Mid-span bending moment of a simply supported bridge; 

• Load Effect 2: Left support shear in a simply-supported bridge; 

• Load Effect 3: Central support bending moment of a two-span 

continuous bridge. 

Fifty days of traffic are simulated and the daily maximum (DM) load effects 

identified in each case (for reasons given in Chapter 4). The results obtained 

using HeDS are taken as the reference for assessing other headway models. 

Other headway models considered are based on the normalized headway model, 

but with four different MGCs: 5 m, 10 m, 0.5 s and 1.0 s. In each of these cases, 

generated headways are checked and adjusted for gaps less than the MGC as 

described in Figure 5.1. Five sets of 50-day simulations for each of the headway 

models are generated to provide an indication of the repeatability of results.  

For the time-based MGCs, the minimum distance is taken to be the minimum 

specified time gap multiplied by the speed of the following truck. That is, the 

truck for which the headway is to be modified. 

5.4.2 The effect on event types and composition 

For the five runs of 50 days carried out, the numbers of trucks involved in the 

daily maximum load effects are shown in Figure 5.13 for the HeDS model. For 

the other headway models, the composition of the daily maximum loading 

events, in terms of event type, is detailed in Figure 5.14. 
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Figure 5.13: Mean composition of maximum-per-day load effects for HeDS. 

From Figure 5.13 it can be seen, for example, that only two 5-truck events 

feature in the full 250 days of simulation (5 runs of 50 days each); both occurred 

at the 50 m bridge length and for Load Effect 2. There are no single truck 

loading events that feature in the HeDS daily maxima, but 2-truck events are 

important, particularly for shorter lengths. Also present are 3-truck events, 

particularly for greater lengths. This is most pronounced for Load Effect 2, 

where the influence line favours a lesser concentration of loading. Also, 4-truck 

events feature for 40 and 50 m bridge lengths. 

For the MGC models, Figure 5.14 shows the difference in the number of i-truck 

DM events featuring, relative to the HeDS model and expressed as a percentage 

of the total number (250) of DM events. Again no 1-truck events feature as a 

maximum-per-day load effect. For the case of 2-truck events, all but one of the 

MGC models under-estimate the number of DM 2-truck events. With the 

exception of Load Effect 2 and bridge length 40 m, the 1.0 s MGC is similar to 

the HeDS results. The under-estimation of the 2-truck events by the other 

MGCs is mirrored by over-estimation of 3- and 4-truck events. Roughly, it 
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appears that about two-thirds of the under-estimate of 2-truck events 

corresponds to the over-estimate of 3-trucks, with the remaining third given to 

the 4-truck events. There is no significant variation for the 5-truck events, and 

very few are recorded. 
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Figure 5.14: Percentage variation on mean DM event composition from HeDS. 
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5.4.3 The effect on load effect due to different events 

Intuitively, it is evident that the headway mainly affects events in which 

following trucks feature. The majority of 2-truck events will be meeting events, 

and hence the load effects derived therefrom should not be unduly affected by 

differing headway models. Conversely, 3-truck events, by definition, will 

comprise two same-lane trucks and a single truck in the other lane. Hence, the 

load effect value may be quite sensitive to the headway model used.  

Using HeDS as a reference, it is found that the three load effects studied 

exhibited very similar ‘errors’ when broken down into 2- and 3-truck events: 

Figure 5.15 details the average error in mean daily maximum load effect for 2-

truck and 3-truck loading events only, relative to the HeDS model. Such a 

measure is considered to be generally representative of any changes to the 

underlying phenomena. 

The 2-truck events plot of Figure 5.15 (see the scale of the y-axis), demonstrates 

that such events are not sensitive to the headway assumption used as expected, 

and random variation could easily account for the observed differences. 

The 3-truck events plots, also shown in Figure 5.15, demonstrate that such 

loading events are particularly sensitive to the headway model used. In general 

the other headway models are conservative, presumably implying that more 

trucks have the same, or smaller, headways in comparison with HeDS. There is 

a notable error for the 1.0 s MGC on 20 m bridge lengths which is obviously 

caused by the imposition of a minimum headway of similar length to the bridge 

itself, thereby effectively removing the third truck.  
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Figure 5.15: Mean change of load effect for different event types and headway 

models, relative to the HeDS model. 

Given the enforcement of the minimum gap criteria shown, it is therefore 

evident that the conservatism in the other headway models arises from the 

‘bunching’ of trucks’ headways at the MGC – more trucks at small headways 

increases the chances of having a heavier truck closer than otherwise probable. 

As stated at the outset of this chapter, Chapter 6 demonstrates that the 

statistical analysis to be carried out relies upon all of the event-types that occur 

on the bridge length. More importantly, Chapter 6 also demonstrates the 
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particular importance of the 3- and 4-truck events to the characteristic load 

effect values. Therefore, such inaccuracies in the MGC headway models have 

significant consequences. 

5.4.4 The effect on daily maximum load effect values 

Although extrapolation to the lifetime of the bridge is usual, that process may 

introduce uncertainty or mask the differences in the headway models. Hence the 

errors in the mean load effect, relative to the HeDS model average, of the 50 

daily maxima are illustrated in Figure 5.16 for each of the three load effects 

considered. Five points are shown in each case, indicating the random variation 

between each run of fifty days.  

It can be seen from Figure 5.16 that the daily maxima are quite sensitive to the 

gap assumption, particularly for the longer spans. That is, as more space 

becomes available to load, inaccuracies in the headway assumptions are 

amplified. For the load effects illustrated, most gap assumptions are 

conservative; up to about 15 - 20% in the case of the 5 m assumption. Errors for 

Load Effect 3 are similar to Load Effect 1 while those for Load Effect 2 are 

more variable and can be conservative or non-conservative. Thus it appears that 

the shape of the influence line features significantly. 
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Figure 5.16: Percentage difference in mean DM load effect value relative to 

HeDS for various headway models. 

5.4.5 The effect on characteristic load effect value 

It is not the mean of the daily maximum load effects that is relevant for bridge 

assessment, rather the characteristic load effect. Further, for this application, it 

is only the relative values of characteristic load effect that are of interest. 
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However, given that there are five runs for each model; variability due to the 

generated traffic is part of each extrapolation. For each run, headway model, 

bridge length and load effect, daily maxima load effects are fit to a Gumbel 

distribution and extrapolated to a 1000-year return period – this procedure is 

explained in Chapter 3. In the light of the results of Chapter 6, these results are 

strictly comparative and not absolute. 

The five HeDS results for each bridge length appear as points in Figure 5.17 

whose means are the x-axes. The results for the other headway models, relative 

to the mean of the five HeDS calculations, are presented in Figure 5.18. For the 

different gap assumptions, there is significant variation in the results for each of 

the five runs, particularly for longer bridges. In general, there is considerably 

less variation in the five HeDS runs.  
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Figure 5.18: Variation in characteristic values, relative to mean HeDS value. 
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The gap assumptions result in substantial differences in characteristic value. 

While there is considerable variation between runs, it can be seen that the gap 

assumption strongly influences the mean result – by as much as 20% to 30%, 

depending on the assumption adopted. For Load Effects 1 and 3, the traditional 

approaches are generally conservative but for Load Effect 2 there is no clear 

trend. 

There is a substantial non-conservative result from the 1.0 second gap 

assumption in 40 m bridges. The critical distance between point loads for 

central support moment in a bridge with two 20 m spans, is a little less than 20 

m. The truck speeds are normally distributed but generally within 70 to 100 

km/h, equivalent to ~20 to ~27 m in 1 second. Given a 10 m wheelbase for the 

following truck, the minimum distance between the two tridems implied by the 

1.0 second minimum gap is 30–37 m. As a result, a 1.0 s MGC will cause Load 

Effect 2 to be underestimated for bridge lengths in the range 35–50 m. Figure 

5.19 illustrates this point; it can be seen that the 1.0 s gap assumption has 

resulted in a considerably different truck arrangement to other methods. 
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(a) 

(b) 

(c) 

(d) 

(e) 
Figure 5.19: The critical 3-truck daily maximum events for Load Effect 2 and 40 

m length for gap assumptions (a) 5 m; (b) 10 m; (c) 0.5 s; (d) 1.0 s, and for; (e) 

HeDS. GVW is shown on the trucks in units of deci-tonnes (i.e. kN/0.981). 
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5.5 Summary 

The HeDS model presented appears to meet many of the requirements of a good 

headway model. It is relatively easy to implement, though quite involved to 

calculate initially. By using the features of the traffic - such as low correlation 

between headway and flow for small headways – the model is kept as simple as 

possible. The HeDS model is alternately conservative and non-conservative in 

comparison to the other models. Its results also typically lie between those of 

the 0.5 and 1.0 second MGC results. It appears that an MGC of around 0.7 - 

0.8 seconds could give similar results to the HeDS model, were it to be required 

(however this is not recommended). 

The influence line shape is found to be a determining factor in the accuracy of a 

given headway model when viewed in terms of its resulting load effects. It is 

found that ‘peaked’ influence lines (Load Effects 1 and 3), exhibit different 

responses to flatter influence lines (Load Effect 2). Generalizing further to 

influence lines not studied is suspect. Melchers (1999) notes a similar 

phenomenon in floor loading. 

Through the implementation of the HeDS model, surprising results are found – 

such as the sensitivity of the Load Effect 2 influence line to the headway model 

used. More importantly, because the HeDS model does not artificially ‘bunch’ 

trucks at certain headways, these surprising results are able to be understood 

and explained by the nature of the physical process under study. 
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Chapter 6 - STATISTICAL ANALYSIS OF MAXIMA 

6.1 Introduction 

Gumbel (1958), in his summary, sets out the limitations of the asymptotic 

theory of extreme value statistics: 

1. The observations from which the extreme values are drawn ought to be 

independent; 

2. The observations must be reliable and be made under identical 

conditions. The initial distribution […] must be the same for each 

sample. 

Collectively, this set of criteria forms the independent and identically 

distributed (iid) requirement on populations, upon which, an extreme value 

analysis is to be carried out. 

A Bridge Loading Event (BLE) is defined as the presence for a continuous 

period of time of at least one truck on the influence area of the load effect of 

interest. BLEs are classified here on the basis of the number of trucks that 

contribute to the maximum load effect recorded during the event. Hence, for 

example, it is possible to have two trucks involved in a 1-truck BLE, provided 

only one contributes to the maximum load effect. Consequently, BLE-type is 

sensitive to the shape of the influence line for the load effect under 

consideration. 

Single truck loading events are considerably more frequent than events 

involving more trucks, but the mean value of their load effect is relatively small 

as the GVW of individual trucks is limited. Multiple-truck loading events are 

rarer, but the combined weight of the multiple trucks can be much higher, so 
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the load effect tends to be larger. Load effect distributions that result from 

different types of BLE are therefore, in general, different. 

This chapter addresses the impact of the iid limitation of extreme value analysis 

upon the bridge loading problem. Initially, load effect distributions caused by 

different types of loading event are studied and are shown to be non-iid. A 

method is then derived which accounts for the differences in load effect 

distribution and permits an extreme value analysis. This method is used in both 

theoretical and practical applications. The theoretical examples provide 

information on the behaviour of the method when its use is compared to known 

results. The practical application of the method is compared with a hybrid 

conventional approach derived from the current literature (Chapter 2). 
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6.2 Background 

6.2.1 Distribution of load effects 

The load effect resulting from a BLE, Si, is the maximum load effect over the 

time period of the event. The distribution of Si is termed the parent, or initial, 

distribution (Chapter 3) of load effect. The population that forms the basis of 

an extreme value analysis is the set of maximum load effect values, each the 

maximum of a sample of load effects which represent a period of time such as a 

day or month (Gumbel 1958). Depending on the form of the parent distribution, 

the extreme value distribution will asymptotically converge to one of Gumbel’s 

(1958) extreme value distributions, or the Generalized Extreme Value (GEV) 

distribution (Chapter 3, Section 3.4). Should the parent distributions from 

different types of load effect be equivalent, then samples from those parents 

may be considered as identically-distributed. Conversely, should the parent 

distributions differ, then samples from those parents are not identically 

distributed. When such samples are ‘mixed’ together to form an extreme value 

population, the iid requirement of extreme value analysis is violated. 

As a basis for the following work, 20 years (about 33×106 trucks) of truck traffic 

based on the Auxerre site, is simulated for Load Effects 1, 2 and 3 (see Chapter 

4, Section 4.4.2) and for bridge lengths of 20, 30, 40 and 50 m. Single-truck 

events are only examined when the GVW of the truck is greater than 40 tonnes. 

A very large number of 1- and 2-truck loading events occur. As a result, only 

the first 50 000 load effect values are retained for further analysis. For 3- and 4-

truck events, a smaller number of events occur and all load effect values are 

retained.  
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In total, for all bridge lengths and load effects, only seven 5-truck events were 

noted, all on a bridge length of 40 m. It is clear that 5-truck (and by the 

physical nature of the process, even 6-truck) events may contribute to the 

lifetime load effect. However, given the current simulation techniques such 

loading events are not readily observable. Indeed, the frequency of about seven 

events per 20 year period means that insufficient information is available to 

include these events in further analysis. It is only by extending the current 

computing techniques, or by some form of importance sampling, that the 

importance of 5- and 6-truck events may be assessed. 

To determine the form of the parent distribution, Si, for each type of loading 

event, a range of statistical distributions is considered, shown in Table 6.1. The 

WAFO Matlab toolbox (Brodtkorb et al 2000), and bespoke Matlab algorithms are 

used to obtain maximum likelihood fitting throughout. The relative quality of a 

fit is assessed from its log-likelihood value (Chapter 3). 

For each load effect and for each span, there are up to 4 types of loading event 

of up to 50 000 values. Therefore, due to the large amount of processing 

involved, a preliminary study identifies those distributions that are to be 

considered for the full analysis – Table 6.1. Other distributions such as the 

Rayleigh, Beta, Gamma and Lognormal distributions do not fit the data nearly 

as well, and are not considered in the full analysis. 

Fitted distributions 

Frechet 

GEV 

Generalized Gamma 

Gumbel 

Normal 

Weibull 

Table 6.1: Distributions considered for load effect parent distributions 
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An example of a set of fits is given in Figure 6.1; Appendix B gives the full 

results of the fits. The GEV distribution is noted especially in Figure 6.1 as it is 

the most frequent best fit. In fact, this is so for 42 out of 55 load effects and 

bridge length fits and the GEV distribution is close to the best in the remaining 

13. However, there are some fits for which it is not sympathetic to the data – 

refer to Appendix B. This is the same problem noted in Chapter 2, Section 2.4.4 

in relation to fits used by other authors. Clearly, in such cases, a more complex 

model would be appropriate. However, as the object here is to ascertain the 

overall behaviour of all of the load effect parent distributions, such cases are not 

investigated further. It is therefore assumed that the parent distributions of load 

effect are GEV-distributed. The parameters of the fits obtained for the GEV 

distribution are also given in Appendix B. 

1000 2000 3000 4000
0

2

4

6

8

x 10-4

Load Effect

P
ro

ba
bi

lit
y

D
en

si
ty

0 1000 2000 3000 4000
-10

-5

0

5

10

15

20

25

Load Effect

S
ta

nd
ar

d
E

xt
re

m
al

V
ar

ia
te GEV fit

GEV fit

 
Figure 6.1: Parent distribution of load effect 1 due to 2-truck events on a 20 m 

bridge (fits to alternative distributions shown dashed). 

The main aim of this analysis is to determine the form of the parent load effect 

distributions, and in doing so, to determine if they may be considered identical. 

Figure 6.2 shows the GEV distributions for Load Effect 1, all bridge lengths, 

and for all event-types. From this figure, and the main body of results given in 
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Appendix B, it can be seen that the distributions of load effect are different, 

depending on the composition of the loading event. 

0 2000 4000 6000
0

0.5

1

1.5

2

2.5

3
x 10

−3

P
ro

ba
bi

lit
y 

D
en

si
ty

0 2000 4000 6000
0

0.5

1

1.5

2
x 10

−3

0 5000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

Bending Moment (kNm)

P
ro

ba
bi

lit
y 

D
en

si
ty

0 5000 10000
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

Bending Moment (kNm)

1−truck
2−truck
3−truck
4−truck

20 m Bridge Length

50 m Bridge Length40 m Bridge Length

30 m Bridge Length

Figure 6.2: Parent distributions of Load Effect 1. 

The GEV parameter values for Load Effect 1 are shown in Figure 6.3 for 

different event types and bridge lengths. Immediately apparent is the significant 

difference in the scale and shape parameters for the 1-truck events. Of 

particular physical significance is that the shape parameter indicates an 

unbounded distribution which is physically impossible. These values should be 

rejected for any real application. In such cases the fitting algorithm should be 
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limited to a shape factor of zero: the Gumbel distribution. To remain faithful to 

the simulated data, the negative shape parameters are kept here, and the 

implications are shown later to be problematic. The difference in the scale 

parameter is as a result of the limitation on 1-truck events: only those of trucks 

with GVW over 40 tonnes are included. Also, it is the 1-truck events that are 

least well fit by the GEV approximation to the parent distributions (Appendix 

B). For 2-, 3- and 4-truck loading events, it can be seen that for a given bridge 

length, the location changes slightly, the scale remains almost constant, and the 

shape parameter changes slightly. 
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Figure 6.3: GEV parameter values for Load Effect 1. 
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The pattern of the GEV parameters illustrated in Figure 6.3 is repeated for the 

other load effects studied. Approximately, it appears that the location and scale 

parameters increase linearly with bridge length. To compare the relationship 

between the GEV parameters for different load effects (whose absolute values 

are significantly different), a normalization process is used, and is explained in 

more detail in Appendix B. For each load effect and bridge length, the 2-truck 

event location parameter value is scaled to a value of 100. This factor is then 

applied to the location and scale parameters of each of the fits for the other 

event types. Also, as a means of comparing the effect of bridge length, the 

location parameters for the 2-truck events of bridge lengths of 30, 40 and 50 m, 

are expressed relative to the normalized (100) 2-truck event location parameter 

of the 20 m bridge length. Thus, the effect of bridge length may be seen in 

Figure 6.4 – Load Effect 3 is not as sensitive to the bridge length as the other 

load effects – most probably due to its ‘flatter’ influence line shape. 
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Figure 6.4: Effect of bridge length on 2-truck event location parameters. 

The normalized parameter values for Load Effect 1 are shown in Figure 6.5. 

This form of representation makes it clear that, relatively, for the multiple truck 

events, the location parameter increases with increasing numbers of trucks in 



CHAPTER 6 – STATISTICAL ANALYSIS OF MAXIMA 

178

the loading events; the scale parameter remains constant for events of over 1-

truck; and, the shape parameter rises slowly. The 1-truck events exhibit a 

similar location value, but a lower scale value than the 2-truck event. This is 

expected as the 1-truck events are sampled only from trucks with GVW over 40 

tonnes, whilst the 2-truck events represent all possible GVW values. 
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Figure 6.5: Normalized GEV parameter values for Load Effect 1. 

The process of relating the parameters to the 2-truck event location value 

means that a global comparison of GEV parameters may be made, and this is 

shown in Figure 6.6. This figure is formed by superimposing the figures, similar 

to Figure 6.5 for each of the load effects. From this figure, for all spans and all 

load effects, a discernable relationship between the distributions of load effect 

for different event types is evident. The average parameter values from Figure 

6.6 are determined, and used as the basis of further analysis in which a 
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representation of the relationship between the event types is required. These 

parameter values are given in Table 6.2. 
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Figure 6.6: Normalized GEV parameter values for all load effects. 

 1-truck 2-truck 3-truck 4-truck 

Shape -0.06 0.15 0.22 0.20 

Scale 7.85 35.61 32.20 33.91 

Location 92.21 100.00 123.85 146.73 

Table 6.2: Mean normalized GEV parameters for event types. 

6.2.2 Independence of events 

Gumbel’s first requirement for the use of extreme value theory states that 

observations from which extreme values are drawn ought to be independent. 

Independence requires that event-types are not reliant on the type of event 

preceding it. Intuitively it is reasonable that occurrences of bridge loading 
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events are independent: there is no rational mechanism though which a 2-truck 

event may be reasoned to ‘cause’ a subsequent 4-truck event, for example. 

The assumption that occurrences of different event-types are independent is 

adopted in further analyses. Should mild dependence exist, however, the work of 

Castillo (1988) and Galambos (1978) demonstrates that standard extreme value 

theory may still apply. 

6.2.3 Hybrid conventional approach 

The previous sections have described how load effect values arising from 

different BLE-types are (surely) independent but not identically distributed. To 

take samples from such a mixture for use in an extreme value analysis violates 

the iid limitation of extreme value theory. However, the sensitivity of the results 

of an extreme value analysis to this violation cannot be readily assessed with 

usual extreme value approaches. Therefore some form of – what is termed here 

as – composite distribution statistics are required; this is developed in the 

following sections. 

A hybrid ‘conventional’ approach to the bridge loading problem is used to 

compare with the composite distribution statistics developed as part of this 

research. This approach uses the absolute daily maximum load effect values, 

regardless of event-type, and maximum likelihood estimation is used to fit a 

GEV distribution to this population of ‘mixed’ maxima. In this way, many of 

the sources of error in the current literature are removed, such as: choice of 

population; the extreme value distribution used; the means of estimation; and 

the choice of threshold. Of course, the ‘error’ of interest, that of mixing non-iid 

data, is retained. The resulting comparisons therefore only have the ‘mixing’ as 

the basis for any differences. 
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6.3 Composite Distribution Statistics 

6.3.1 Basis of development 

 A Bridge Loading Event (BLE) is defined in Section 6.1 as the presence for a 

continuous period of time of at least one truck on the influence area of the load 

effect of interest. Also, a BLE is classified on the basis of the number of trucks 

that contribute to the maximum load effect, Si, recorded during the event. BLEs 

therefore have time duration: the time between instants when there are no 

trucks present on the bridge. The BLE so-defined is considered here as the 

fundamental event, in terms of probability theory (see Chapter 3). 

The sample space of bridge loading events is constituted on the basis of the 

types of events that may occur. Of course, the sample space is not limited to 

any particular number of truck events but only 1- to 4-truck events are 

considered here. Therefore, in such a sample space, the events are deemed to be 

mutually exclusive and collectively exhaustive. Each BLE in this sample space 

also has a probability associated with it (relative frequency of occurrence). 

The bridge lifetime is comprised of a large number of repetitions of the BLE 

sample space. In the bridge lifetime, many of each of the BLE-types may occur.  

Therefore, there are two frames of reference from which bridge loading events 

can be considered and, in general, different analyses result for each. The 

development described next is based on the fundamental event, described above, 

but permits inference on the bridge lifetime load effect. 

6.3.2 Probability by event type 

The BLE sample space is partitioned into tn events, where tn is the maximum 

possible number of trucks contributing to a maximum load effect. The 
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probability that the maximum load effect in the ith event, Si, is less than or 

equal to some value s is then given by the Law of Total Probability: 

 [ ] ( )
1

tn

i j j
j

P S s F s f
=

≤ = ⋅∑ (6.1) 

where ( )jF ⋅ is the cumulative distribution function for the maximum load effect 

in a j-truck event and jf is the probability of occurrence of a j-truck event, 

where 1, , tj n= … .

For a given reference period (such as a day), dn BLEs occur, and the 

distribution of the maximum value of the events, S , is given by: 

( )

[ ]

1
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d

d
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ii
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i
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P S s P S s

P S s

=

=

  ≤ = ≤    

= ≤∏
(6.2) 

This assumes that individual BLEs are independent. Substitution of (6.1) into 

(6.2) gives: 

 
1

( )
d

t
nn

j j
j

P S s F s f
=

 
 ≤ = ⋅  

 
∑ (6.3) 

The number of BLEs in the reference period, dn , is a random variable, and is in 

general different for each period. Gomes and Vickery (1978) note a similar issue 

with wind speeds, but report a study in which the approximation of the 

distribution of dn by its mean value does not result in significant inaccuracy. 

Both Gomes and Vickery (1978) and Gumbel (1958) describe the inclusion of 

the variability of dn in the analysis, but this is not attempted here. Therefore, 

in what follows, the expected value of dn is used. 
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6.3.3 Asymptotic approximation 

Considering only 1- and 2-truck events first, 2tn = and (6.3) reduces to a 

binomial expansion: 

 ( ) ( ) ( )1 1 2 2 1 2 1 2
0

d
d d d

n
n d n k n kk k

k

n
P S s f F f F f f F s F s

k
− −

=

 
 ≤ = + =   
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∑ (6.4) 

It is well known that a binomial distribution of the form, 

 ( )1 2 1 2
0

d
d d

n
n d n kk
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n
f f f f
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−

=

 
+ =  
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converges to the normal distribution (for 1 10dn f ≥ approximately) with mean 

1dn f and variance 1 2dn f f (Feller 1968). Hence, the expansion of (6.5) is 

symmetrical with equal terms on either side of the mean – an illustrative 

example on this point follows this development. Rearranging (6.5), it can be 

expressed with terms in order of decreasing magnitude, as: 
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Equation (6.4) can be expressed in a similar form but, in this case, only the 

combined coefficient and 1 2
1 2

d dn f k n f kf f+ − terms are symmetrical: 
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(6.7) 

where the distributions ( )iF s are written as iF for clarity. As ( )1F s and ( )2F s

are very close to unity for extrapolations to long return periods, they can be 

expressed as: 
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( ) 1 where   1,2i iF s iδ= − = (6.8) 

for small iδ . A Taylor series expansion gives: 

 ( ) ( ) 211 1 1
2

mm
i i i iF m m mδ δ δ= − = − + − −… (6.9) 

which is well approximated by the first two terms. Introducing the functions,  

 ( )1k
i d i ig n f k δ+ ≡ − + and ( )1k

i d i ig n f k δ− ≡ − −  

equation (6.7) then becomes: 
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(6.10) 

Ignoring second-order terms, ( )1 2 1 2
k k k kg g g g− + + −+ reduces to 1 1 2 2(1 )(1 )d dn f n fδ δ− − .

Using equation (6.6), equation (6.10) then becomes: 

 ( ) ( ) ( ) ( )1 1 2 2 1 2 1 1 2 21 1d dn n
d df F f F f f n f n fδ δ+ = + − −  (6.11) 

Given that 1 2 1f f+ = (representing the area under the probability density 

curve), and again using (6.9), this can be simplified to: 

 1 2
1 2

d dn f n fP S s F F ≤ =   (6.12) 

If the parent distributions are extreme value distributed, then, by the stability 

postulate described in Section 3.4.2, ( ) 1

1
dn f

F s   and ( ) 2

2
dn f

F s   are also extreme 

value. Otherwise ( ) 1

1
dn f

F s   and ( ) 2

2
dn f

F s   converge asymptotically to an 

extreme value distribution if ndf1 and ndf2 are sufficiently large with respect to 
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the particular parent distributions. In such cases therefore, equation (6.12) 

becomes: 

 ( ) ( )1 2P S s G s G s ≤ =   (6.13) 

where ( )1G ⋅ and ( )2G ⋅ are extreme value distributions appropriate to each 

parent distribution. 

For nt event types, the multivariate normal distribution approximation to the 

multinomial distribution (Bishop et al 1975) may be used obtain a 

corresponding result: 

 ( )
1

tn

j
j

P S s G s
=

 ≤ =  ∏ (6.14) 

This result is similar to those described in Chapter 2, Section 2.5.2.  

To avoid a priori decisions on the tail behaviour of the parent distribution, 

( )iG ⋅ is considered to be of GEV form. By fitting to maxima of each event-type 

separately, the parameters of each distribution, ( )iG ⋅ , namely iµ , iσ , and iξ ,

are determined. Hence equation (6.14) becomes:  

 ( )expP S s h s   ≤ = −    (6.15) 
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6.3.4 Illustrative example 

To illustrate the binomial nature of the 2tn = case, an example is considered in 

which there are 5 events in a day. The probability of a 1-truck event is 3/5 and 

the probability of a 2-truck event is 2/5; that is, the expected values are 3 and 2 

for 1-truck and 2-truck events. Therefore, from (6.1), the parent distribution of 

load effect is given by: 

 [ ] ( ) ( )1 2
3 2
5 5iP S s F s F s≤ = +  (6.17) 

The distribution function for the maximum-per-day load effect, S , is then given 

from (6.3) as: 

 ( ) ( )
5

1 2
3 2
5 5

P S s F s F s  ≤ = +    
(6.18) 

The binomial expansion can be used to evaluate (6.18): 
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in which the distributions ( )iF s are written as iF for clarity. The bracketed 

terms reflect the different probabilities related to all possible occurrences of the 

events, that is, there may be 

• 5 1-truck events (probability equals 5
1f ); 

• 4 1-truck  and 1 2-truck events (probability equals 4
1 25 f f ); 

• 3 1-truck  and 2 2-truck events (probability equals 3 2
1 210 f f ); 

• 2 1-truck  and 3 2-truck events (probability equals 2 3
1 210 f f ); 

• 1 1-truck  and 4 2-truck events (probability equals 4
1 25 f f ); 

• 5 2-truck events (probability equals 5
2f ). 

Clearly, of the above possibilities, some are more likely than others. Further, the 

expected values should have the highest probability of occurrence, that is, 3 1-
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truck and 2 2-truck events should have the highest probability. This may be 

seen best in the histogram which shows the weights of each term in the above 

expansion. Although possible, the occurrence of 5 2-truck events is seen to be 

very unlikely whereas the occurrence of 5 1-truck events is relatively more 

likely, as is expected. 
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Figure 6.7: Histogram of term-weights for the illustrative binomial example. 

The preceding arguments demonstrate that as dn increases, the weights of the 

terms at the extremities decreases. That is, a mixture of the expected number of 

occurrences from each event-type becomes more and more probable. 

6.3.5 Theoretical comparisons 

A theoretical comparison of equation (6.14) with the conventional approach is 

difficult. Most of the statistical literature deals with likelihood ratio tests for 

nested models (Lehman 1986) but there are tests for non-nested models such as 

that proposed by Voung (1987). Unfortunately these tests do not strictly apply 

in this case, as the distributions for comparison are derived from different data 

sets, and a different number of data points. Also, comparison of the fits to the 
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overall daily maxima (for example) is misleading – the conventional approach 

will generally be better, as the composite distribution statistics approach is not 

fitted to the same set of maxima. 

Based on the lack of theoretical means to evaluate the performance of the 

proposed method, some theoretical examples are used and are described in the 

following section. 
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6.4 Application to Theoretical Examples 

6.4.1 Introduction 

Aims 

A theoretical comparison of the method of composite distribution statistics 

(CDS) against the hybrid conventional approach – described in Section 6.2.3 – 

is theoretically difficult, as has been noted previously. Therefore, the comparison 

is made through numerical examples for which the exact answer is known. 

Thus, the performance of CDS against the conventional method is assessed. 

Procedure 

The studies presented stipulate the parent distributions of load effect. 

Therefore, via equation (6.3), the exact distribution of load effect is known. 

Further, random values of daily maximum values from each component 

mechanism are simulated. Such data samples form the basis of the application 

of CDS and the conventional method; the results from both methods can be 

compared to the exact answer for a given return period, or the exact 

distribution. In this way, the studies mirror the real-life application of the 

proposed method and its behaviour in such problems can be assessed. 

6.4.2 Sample problems and results 

Many individual studies have been performed based on the approach outlined 

above; three such studies are presented here: the first and second are designed 

to reflect the true relationships between mechanisms that comprise the loading 

events; the third study, based on arbitrary parameters, provides insight into the 

nature of the asymptotic theory of extreme order statistics, and cases in which 

careful consideration of its applicability is required. 
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In each of the first two studies, six examples are carried out, based on all 

possible permutations of event-types, in an attempt to understand the influence 

of each event-type on the lifetime load effect. The six examples are derived from 

the different event-types as given in Table 6.3. Each event-type has an 

associated distribution and number of occurrences per day, for each of Studies 1 

and 2, and these are described for each study in the following sections. 

Example 1-truck 2-truck 3-truck 4-truck 

1 � �
2 � � �
3 � � � �
4 � � �
5 � �
6 � �

Table 6.3: Composition of the examples in Studies 1 and 2. 

Study 1 – GEV Normalized Parent Distributions 

In this study, the parent distributions obtained in the 20-year simulations of 

Section 6.2.1 are normalized (as described in Appendix B), and are used to 

approximate the inherent relationships between real parent load effect 

distributions. The parameters of each event-type are given in Table 6.4. To 

avoid unnecessary computation, these parent distributions are used to obtain 

daily maximum distributions (for each event-type) by linear transformation of 

the parent distribution, based on the stability postulate, as described in 

Appendix B.1. 

The derived daily maximum distributions are used to randomly generate 1000 

samples for each event-type, and this data forms the basis of the CDS approach. 

Further, the samples are processed to obtain the overall maximum load effect 

for each day, and this data forms the basis of the Conventional approach. Both 
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the CDS and Conventional models are then used to estimate the 100-year 

return level. This whole process is repeated 100 times to arrive at a distribution 

of predicted return level. The exact distribution for 100-year return level is 

derived from the stipulated distributions by application of equation (6.3). 

 1-truck 2-truck 3-truck 4-truck 

ξ -0.06 0.15 0.22 0.20 

σ 7.85 35.61 32.20 33.91 

µ 92.21 100.00 123.85 146.73 

d jn f 3102 2566 517 19 

Table 6.4: Parameters of mechanisms for Study 1. 

Figure 6.8 shows a typical set of random samples for each of the event-types, as 

well as the overall daily maximum values. The CDS and Conventional fits are 

also shown in the figure. It can be seen that the CDS converges towards the 

Conventional. It does so, as it is allowing for the possible occurrence of loads 

effects from any of the 2-, 3-, or 4-truck events. The Conventional does not 

allow for this and follows the governing 4-truck simulation data. 

In fact, for each of the examples of this study in which the 1-truck event is 

included, it governs the extreme due to the negative shape parameter. As noted 

earlier, it is physically impossible that 1-truck events are unbounded and hence 

in any real application the shape parameter should be limited to zero. Therefore 

as the GEV fits to the parent distribution of load effect for 1-truck events do 

not correctly reflect the underlying phenomenon, this distribution is not 

appropriate: a more complex (composite) distribution is required for proper 

inclusion of 1-truck loading events. 

Colin Caprani
Note
Load not loads
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Figure 6.8: Study 1, Example 3: Typical extrapolation of 1- to 4-truck 

mechanisms from normalized, measured parent distributions. 

Also of interest from Figure 6.8 is the ‘crossover’ point of several mechanisms at 

a normalized load effect value of about 300. As this crossover point occurs 

outside the range of the random samples, the Conventional method does not 

account for the governing mechanism beyond the crossover. However, in such 

cases the CDS method reflects the mixing that occurs, and properly reflects 

both the mixing of distributions and any clear governing distribution. 
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All of the event-types are included in Example 3 and the GEV-fitted 

distributions of results for this example are shown in Figure 6.9. It can be seen 

that the CDS method accounts for the divergent tail of the 1-truck governing 

mechanism, whereas the Conventional method does not: the 1-truck mechanism 

is not sufficiently dominant in the simulation range for the Conventional 

method to reflect this. Figure 6.9(a) shows that the exact distribution of the 

100-year return level exhibits two distinct modes; the lower of which reflects the 

situations in which the 1-truck event does not govern, rather the 2- and 4-truck 

events govern. The implications of including physically impossible shape 

parameter values ( 0< ) upon the lifetime load effect are apparent. It is therefore 

important that any real application takes the physical phenomenon into account 

and limits the possible range of distributions, as appropriate. 

The parameters of the GEV distributions fitted to the distribution of return 

level estimates (for each of the 100 runs), are used to calculate the mean and 

(pseudo-)coefficient of variation ( 2µ σ ) for each example for the CDS and 

Conventional methods. For each example, the mean is expressed as a ratio of 

the mode of the exact 100-year return level distribution, calculated from 

equation (6.3). The results are shown in Figure 6.10. 

From Figure 6.10 it is apparent that the CDS method estimates the return level 

with good accuracy, and has a low coefficient of variation for the examples in 

which the 1-truck mechanism is not included. The Conventional method does 

not estimate the return level as accurately but has a lower coefficient of 

variation for the examples including the 1-truck mechanism. 
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(a) Distributions of 100 return level values; 
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(b) 100 CDS and Conventional extrapolations and the exact mode; 

Figure 6.9: Study 1, Example 3: 100-year return level estimates from CDS and 

conventional methods. 

In this study, it is clear that the apparent ‘misfitting’ of the 1-truck parent 

distribution has severely distorted the results. In the following study however, 

this effect does not arise as the parent distribution is reverted from measured 

distributions of daily maxima. 
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Figure 6.10: Results for Study 1 examples. 

Study 2 – GEV Normalized Reverted Parent Distributions 

Similarly to the previous study, this study uses GEV parent distributions to 

approximate parent distributions that may be found in reality. In this case, 

however, the problems of measuring and fitting parent distributions do not arise 

because ‘reverted’ parent distributions are used. These distributions are 

obtained from daily maximum distributions for each mechanism derived from 

the full simulation of 1000 days of Auxerre traffic. A backwards application of 

the stability postulate (as explained in Appendix B) is used to obtain the parent 

distributions that would result in the observed daily maximum distributions. 

Again however, and as explained in Appendix B, the parameters of the 

distributions are normalized to reflect the underlying relationship between the 

mechanisms regardless of load effect and bridge length. 
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The parameters of the mechanisms used in this study are given in Table 6.5; the 

individual examples are made up of different combinations of event-types, as 

given in Table 6.3. The procedure employed is as per Study 1. Figure 6.11 

shows a typical random data set, along with the CDS and Conventional fits to 

the data. 

 1-truck 2-truck 3-truck 4-truck 

ξ 0.06 0.09 0.28 0.21 

σ 1.41 2.37 9.99 22.76 

µ 71.93 100 67.42 21.92 

d jn f 3102 2566 517 19 

Table 6.5: Parameters of mechanisms for Study 2. 
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Figure 6.11: Study 2, Example 3: Typical extrapolation of 1- to 4-truck 

mechanisms from normalized, reverted parent distributions. 
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It is clear from Figure 6.11 that the 2-truck event governs in the range of the 

data, and the Conventional fit reflects this at the extreme level. The CDS 

distribution reflects the 4-truck distribution at the extreme range however, and 

it is this event-type that governs. 

The GEV distributions fitted to the collection of 100 CDS and Conventional 

estimates of return level are shown in Figure 6.12. It can be seen that, due to 

the reasons outlined, the Conventional method underestimates the return level. 

The difference between the Conventional and CDS distribution modes is not 

large. It is the skewed nature of the CDS distribution that is significant: its 90-

percentile is similar to that of the exact distribution. 

Similarly to Study 1, the parameters of the GEV distributions fitted to the 

distribution of return level estimates are used to calculate the mean and 

coefficient of variation for each example. The results are shown in Figure 6.13. 

It is clear that the CDS means accurately reflect the mode of the exact 100-year 

return level distribution. The accuracy of the Conventional method appears to 

be dependent on the types of mechanisms included in the example. 

Of note from this study, and Study 1, is the absolute value of the normalized 

load effects for Example 3 from each study. The exact modes are approximately 

350 and 123 for Studies 1 and 2 respectively. This large difference is, in part, 

due to the inaccurate representation of the 1-truck event in Study 1. However, 

this is not the sole reason, and differences between the parent distributions of 

the other event-types from Study 1 to Study 2 also feature. It is clear that 

inference on the lifetime load effect level from parent distributions is very 

sensitive to the parameters of those parent distributions. 
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(a) Distributions of 100 return level values; 
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(b) 100 CDS and Conventional extrapolations and the exact mode; 

Figure 6.12: Study 2, Example 3: 100-year return level estimates from CDS and 

conventional methods. 
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Figure 6.13: Results for Study 2 examples. 

Study 3 – Normal Distribution Examples 

Through various other studies, it is found that the CDS method described can 

appear to ‘fail’ at times. However, this is typically caused by inappropriate 

application of extreme value theory. In such cases, the use of ‘exact’ 

distributions of extreme may be more appropriate than the use of asymptotic 

extreme value theory. 

This point is considered through use of the normal distribution as the basis of 

two statistical generating mechanisms. The normal distribution is very slow to 

converge to asymptotic extreme value form (Cramér 1946, Fisher and Tippett 

1928). Theoretically, distributions of maxima from a normal parent converge 

asymptotically to the Gumbel extreme value distribution (Castillo 1988). 

Therefore, the Gumbel distribution is used as the appropriate extreme value 

distribution. Also considered is fitting of the ‘exact’ distribution of maxima, 
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( )nF ⋅ . In this case however, n is also considered as a parameter of the 

distribution as it is typically not known – only the data set of maxima is known. 

The Gumbel distributions are fitted using maximum likelihood, as are the 

‘exact’ distributions of maxima. The log-likelihood function for fitting the 

distribution of maxima, ( )nF ⋅ , with unknown n, is given by: 

 ( ) ( ) ( )1

1
; , , log ; , ; ,

m
n

i
l x n n f x F xµ σ µ σ µ σ−

=

 = ⋅ ⋅ ∑ (6.20) 

Equation (6.20) is true for any distribution, but in this case, ( )F ⋅ and ( )f ⋅

represent the normal cumulative distribution and probability density functions 

respectively. This expression arises from equations (3.13) and (3.23). Numerical 

minimization of the negative log-likelihood is used to find those parameters that 

maximize the likelihood function. 

The two normal distributions are taken as ( )2
1 420,30N and ( )2

2 380,45N ; the 

relative frequencies of occurrence are 1 0.9f = and 2 0.1f = . It is to be noted that 

1 2µ µ> yet 1 2σ σ< whilst 1 2f f� . It is considered that 1000 events per time-

period (block) occur and 1000 samples of block maximum are taken for each 

distribution, as is the absolute maximum for each block. These two data sets 

are used as the basis for two distinct applications of CDS and Conventional 

fitting. The two applications of CDS are based on individual Gumbel fits, which 

represents equation (6.13), and individual ( )nF ⋅ fits, representing equation 

(6.12). The Conventional fitting is done using a Gumbel distribution, to 

represent rigorous application of asymptotic extreme value theory. The sample 

data is randomly generated directly from the ( )nF ⋅ distributions to save 

unnecessary computation. The exact distribution is calculated from equation 

(6.3). The results are presented Figure 6.14. 
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Figure 6.14: Example of improper use of asymptotic extreme value theory: (a) 

composite results; (b) ( )2
1 420,30N distribution; (c) ( )2

2 380,45N distribution. 

The results show that the Conventional approach can appear more accurate 

than the CDS method, if asymptotic extreme value behaviour is assumed – 

Figure 6.14(a), CDS Gumbel distribution. However, when lack of convergence is 

allowed for by fitting an ‘exact’ distribution of maxima, or by using the upper 

2√n data (Castillo 1988), the disparity is removed – Figure 6.14(a), CDS ( )nF ⋅

distribution. The disparity is caused by inaccurate fits to the individual 

distributions – Figure 6.14(b) and (c). The Conventional distribution appears 

reasonable as it is fitted to the governing distribution in the simulation data. 
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Effect of Sample Size 

The framework of Example 3, Study 2 is used (as this includes all mechanisms, 

and is not biased by the 1-truck parent distribution estimate) to study the effect 

of different sizes of samples of daily maxima upon which the individual (and 

overall) daily maximum fits are made. Sample sizes of 100, 250, 500, 750 and 

1000 (as previously) are used as the basis of the procedure outlined previously. 

For each of these sample sizes, there are, therefore, fitted GEV distributions for 

the CDS and Conventional methods of the 100-year return level estimates. 

The results of the distributions based upon different sample sizes are shown in 

Figure 6.15 – for clarity only three of the distributions based upon the different 

samples sizes are shown. For both the Conventional and CDS approaches, it can 

be seen that with increasing sample size the variance decreases and the modes of 

the distributions shift slowly to the right. This is most probably caused by the 

increased number of load effect values from the ‘governing’ mechanism as the 

sample size increases. However, it can be seen that the CDS distribution is 

converging towards the exact distribution, whereas that of the Conventional 

method is converging to a different solution. 

For the full set of samples analysed, Figure 6.16 shows the ratios of the mean 

CDS and Conventional results to the mode of the exact distribution (as 

previously described) and the coefficient of variation for the CDS and 

Conventional methods. It is clear to see that the mean is consistently accurate, 

regardless of sample size for the CDS method, whereas that of the Conventional 

method converges to an inaccurate value. This is caused by reasons outlined 

above. Further, the coefficient of variation of the CDS method decreases with 

increasing sample size and appears to be converging to an asymptotic value 

approximately that for a sample size of 1000.  
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6.4.3 Discussion of results 

The results presented in Section 6.4.2 exhibit strong evidence that the CDS 

method outperforms the Conventional approach in the estimate of known return 

levels. It is also demonstrated that caution in its application is required, in 

order to adhere carefully to the requirements of asymptotic extreme value 

theory. However, an approach that uses the CDS method and avoids such 

problems is also presented. 

Whilst it is clear that the conventional method can be reasonably accurate 

(Study 1 – Examples 4 and 5 and Study 2 – Examples 1 and 5), it is also 

apparent that this is due to favourable mixing of the comprising mechanisms in 

the simulation range. Therefore, the quality of the Conventional approach 

estimate is subject to the vagaries of the data – this should not be so for robust 

estimation and inference. Conversely, it appears that the CDS method does not 

require favourable data to return a reasonable estimate. 

Through comparison of Example 3 of Studies 1 and 2, it appears the 

Conventional method performs well when the return level is not sensitive to the 

shape parameter of the 1-truck event. However, when the behaviour of this 

mechanism is outside the simulation data period, the Conventional approach 

does not reflect the distribution of return level accurately. Thus, it is possible to 

conclude that the CDS method is more robust and reflects the exact 

distribution of return level better.  

Briefly, the results presented also demonstrate the inaccuracies that can result 

from incorrect evaluation of parent distribution data – it is better to work with 

extreme values (Castillo 1988, Coles 2001b), though this leads to data wastage. 
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6.5 Application to Bridge Traffic Loading 

6.5.1 Introduction 

The implications of the use of the Composite Distribution Statistics (CDS) 

method for the bridge traffic load problem are assessed in this section. 

Accordingly, a 1000-day simulation of Auxerre traffic on bridge lengths of 20, 

30, 40 and 50 m is carried out for: 

• Load Effect 1: Bending moment in the centre of a simply-supported 

beam; 

• Load Effect 2: Bending moment over the central support of a two-span 

beam; 

• Load Effect 3: Right-hand support shear force in a simply-supported 

beam, 

as described in Chapter 4, Section 4.4.2. Other simulation periods are also used 

to assess the impact of the simulation period, and are compared to the results of 

Section 6.4.2. 

As described in Chapter 4, only significant crossing events (SCEs) are 

processed. Also, when an SCE is identified, the truck(s) are moved in 0.02 

second intervals across the bridge and the maximum load effects for the event 

identified. The pertinent data for the application of the CDS method, as well as 

that for the Conventional approach, is retained for the following analysis. The 

load effect values for a 1000-year return period are also calculated for both 

methods and compared. Maximum likelihood fitting and GEV distributions are 

used throughout. 
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6.5.2 Results of full simulation 

For the load effects and bridge lengths described, 1000-year return period 

characteristic values, calculated from the CDS and Conventional approaches, 

are presented in Table 6.6. Immediately apparent is the general similarity of 

results, but it is also clear that some of the differences are significant – up to 

about 13%. This phenomenon is similar to that of the results presented in 

Section 6.4.2 (as may be expected), and is due to the particular nature of the 

mixing of the individual mechanisms that occurs. 

Load Effect 
Length 

(m) 
CDS Conventional 

Percentage 

Difference 

20 4067 4060 -0.2 

30 7852 7861 0.1 

40 10701 10732 0.3 

1

50 13893 14141 1.8 

20 1067 1064 -0.3 

30 1643 1770 7.7 

40 2921 3297 12.9 

2

50 3785 3941 4.1 

20 922 920 -0.2 

30 963 960 -0.3 

40 1079 1086 0.7 

3

50 1185 1195 0.8 

Table 6.6: Comparison of 1000-year characteristic values. 

Appendix B presents all of the results of this simulation. The fits to each of the 

mechanisms for all load effects and lengths is given, as well as the Conventional 

fit. Figures showing the data, fits, and the CDS and Conventional 

extrapolations for each of the bridge lengths and load effects are also given. 
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6.5.3 Governing mechanisms and mixing 

The cases for which there is little difference between the CDS and Conventional 

approaches, reflect those for which little mixing of the mechanisms occur. That 

is, there is a clear ‘governing’ distribution, or event-type. 

For a 20 m bridge length, and for the load effects examined, 2-truck loading 

events govern the extreme values. Physically, this is most probable as other 

forms of loading events require same-lane trucks. A spatial arrangement of 

loading events that includes same-lane trucks – when headway requirements are 

met – most often results in trucks that are only partially located on the bridge 

length – two examples are shown in Figure 6.17. Accordingly, loading events 

that allow the full length of a truck on the bridge length (or influence line) are 

expected to govern the extreme, and this is borne out in the results. 

(a) Load Effect 1; 

(b) Load Effect 2; 

Figure 6.17: 3-truck events on 20 m bridge length (GVW is shown in deci-

tonnes on the trucks). 
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For a bridge length of 30 m, 2-truck events mainly govern but some 3- and 4-

truck events occur at the upper end of the simulation period. These events are 

not sufficient to affect the governance of the extreme, but this result may be 

reliant on the simulation period. 

For bridge lengths of 40 and 50 m, it can be seen from Table 6.6 that the 

conventional approach is less accurate. It may be inferred from the theoretical 

examples of Section 6.4.2 that this is caused by mixing of the events. Indeed 

this is generally the case. 

Of particular note, is the large difference for the 40 m bridge length, Load Effect 

2 result, shown in Figure 6.18. This figure shows the individual fits along with 

the Conventional and CDS methods and the 100- and 1000-year return periods. 

For clarity, the data is not shown (but can be seen in Appendix B). 

0 500 1000 1500 2000 2500 3000 3500

−2

0

2

4

6

8

10

12

Load Effect

S
ta

nd
ar

d 
E

xt
re

m
al

 V
ar

ia
te

1−truck
2−truck
3−truck
4−truck
Conventional
CDS
100−year RP
1000−year RP

Data
Range

Figure 6.18: Distributions for 40 m bridge length and Load Effect 2. 



CHAPTER 6 – STATISTICAL ANALYSIS OF MAXIMA 

209

Initial examination of Figure 6.18 shows that 1-truck events, and above a 

certain level, 2-truck events, do not govern. It is therefore mainly 3- and 4-truck 

events that govern this load effect, which is to be expected given the shape of 

the influence line (Chapter 4, Section 4.4.2). Therefore, the Conventional fit is 

mainly comprised of these event-types; the net effect of this uneven mixture is 

to produce the distribution shown in Figure 6.18.  

In contrast to the behaviour of the Conventional method noted, the CDS 

method faithfully follows the envelope defined by, firstly the 3-truck event, but 

then the 4-truck event. The behaviour of the CDS distribution at the crossover 

point of the 3- and 4-truck mechanism is also of note: it is slightly removed 

from either curve, reflecting that a load effect could be from either event, and is 

thus more likely (and consequently has a lower y-value) than as if from one 

event-type. This behaviour can also be seen at the crossover of the 2- and 3-

truck curves. Such crossover-point behaviour of the CDS is general and is 

always observed at crossover points. 

It is important to note that physically, given the shape of the influence line, it is 

to be expected that 4-truck events should govern the extreme. This appears to 

be recognized by the results, but possibly not as strongly as may be expected: 

there is only a slight difference in the 3- and 4-truck curves at the extreme 

values in Figure 6.18. A longer simulation period may result in an increased 

importance of 4-truck events. Further, the observed behaviour is subject to 

random variation (similarly to the examples of Section 6.4.2) and it is possible 

that there may be a smaller difference between the two methods for other 

samples. 
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6.5.4 Effect of simulation period 

The implications of the length of the simulation period chosen are assessed, 

relative to the 1000-day period. Though this is studied in the context of the 

examples of Section 6.4.2, it is studied here to assess the effect upon the actual 

application of the CDS and Conventional methods. 

Simulation periods of 50-, 250- and 500-days are used to compare with the 

results of the 1000-day simulation described in the previous section. The 

percentage difference of the CDS and Conventional results, relative to the 1000-

day CDS result, are shown in Figure 6.19. 

In general, it is apparent from Figure 6.19 that the difference tends to reduce 

for increasing sample size, or simulation period. With some exceptions, the CDS 

method gives smaller differences than the Conventional method, though not 

significantly. There is a change in behaviour for the 500-day results: larger 

negative differences are observed for the Conventional approach than for the 

other simulation periods. The difference is significant for Load Effect 2, and this 

is in keeping with the results outlined for the 1000-day simulation. It is clear, 

however, that the other CDS percentages do not exhibit this behaviour and are 

reducing for this larger period. 

Generally, the differences observed due to the simulation period are quite 

variable. It is difficult to infer upon the systematic effect of a longer simulation 

period therefore. Indeed it seems plausible that more than 1000-days of data is 

needed before differences stabilize. It must be noted however, that all such 

results are subject to random variation and the only true comparison is one that 

accounts for this. 
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Figure 6.19: Deviations of extrapolated load effects for different simulation 

periods to those from a 1000-day period. 
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6.6 Summary 

A detailed analysis of load effect is presented at the outset of this chapter. This 

analysis assesses the two primary assumptions of extreme value theory with 

respect to bridge loading events. It is shown that whilst the events may be 

considered as independent, they are not identically distributed. The implications 

of this for standard extreme value analysis of bridge loading events are outlined 

through the derivation of a method that recognizes these facts – the method of 

Composite Distribution Statistics (CDS). 

The CDS method is shown to give different results to a hybrid Conventional 

approach, defined by the best features of models in the literature. From the 

analysis of load effect distributions presented, theoretical examples are 

developed though which the performance of the proposed method is assessed 

and compared with that of the Conventional approach. It is shown that the 

violation of the assumption of identically distributed data by the Conventional 

method, results in different predictions (in some cases significantly so) to the 

CDS method, which acknowledges the differences in distributions of the data. 

The CDS method is applied to full traffic simulations on a range of bridge 

lengths and load effects. It is shown that some forms of loading event tend to 

govern certain lengths and load effects, and that this behaviour is dependent on 

the physical nature of the bridge loading problem. Also, it is clear that it is not 

reliable to assume that a particular event-type governs, as mixing of the 

distributions occurs. Further, it is also noted that the random variation of the 

results of simulations can mask systematic behaviour. As a result, it seems 

prudent to account for this random behaviour in the predictions made. 
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“Prediction is very difficult, especially about the 
future”             - Neils Bohr 
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Chapter 7 - PREDICTION ANALYSIS 

7.1 Introduction 

The examples presented in Chapter 6 demonstrate the variability in the 

predicted extreme that exists even for well-defined initial distributions. As the 

parent distribution is known in these examples, this variability is due to the 

random sampling of the distribution and the random nature of the fitted 

parameter vectors. It is to be expected that this also occurs with the results of a 

bridge load simulation. Therefore a method, reliant on a specific set of sample 

data, is required to estimate the variability attributable to these sources. 

In this work, the theory of predictive likelihood is used to estimate the 

variability in the bridge lifetime load effect prediction. The Eurocode (EC1: 

Part 3: 1994) requires bridges to be designed for the load effect with 10% 

probability of exceedance in a 100-year bridge lifetime – the characteristic value. 

Therefore, predictive likelihood is used to estimate the distribution of 100-year 

load effect (including many sources of variability) and thereby estimate the 

characteristic load effect.  

Predictive likelihood is based on the likelihood function, explained in Chapter 3. 

Through its use, the credibility of different possible lifetime load effect values, 

given the data, is assessed. In this way, postulated lifetime load effect values are 

formed into a distribution of lifetime values based on their relative likelihood. 

Through this approach, sources of variability can be accounted for and the 

resulting distribution reflects this. 

The statistical literature on predictive likelihood is limited to analysis based on 

simple distribution forms. Application of predictive likelihood to the bridge 
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loading problem is complicated by the composite distribution statistics 

approach. However, it may be seen from the results of Chapter 6 that this 

method is required to model the distribution of block-maximum load effect. 

Therefore, the theory of predictive likelihood is outlined in general terms first. 

Following this, application of the theory to both single- and multi-distribution 

problems is considered. Application to a published example is then considered to 

evaluate the performance of predictive likelihood, and aspects relating to its 

implementation are examined. The theoretical examples of Chapter 6 are also 

reviewed with predictive likelihood and application to the bridge loading 

problem follows. 
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7.2 Theoretical Development 

7.2.1 Empirical description 

Before the mathematical details of the theory of predictive likelihood are 

expounded, the method is qualitatively explained. Consider first the GEV 

parent distribution, and the distribution of maxima of samples of size 100, 

shown in Figure 7.1. The level corresponding to a probability of 1-1/100 is the 

mode of the distribution of maxima and this return level is ordinarily obtained 

through extrapolation (Chapter 3). When the PDF is obtained from data using 

maximum likelihood, a value of the likelihood function results. Similarly, a 

likelihood value can be obtained from the distribution of maxima of Figure 7.1 

for a predicted value corresponding to a probability of 1-1/100. The idea of 

predictive likelihood is to propose a value of prediction – the predictand – and 

to maximize both the likelihood of the data and the likelihood of the predictand 

simultaneously. By repeating this process for a range of values of predictand, 

the values of joint likelihood may be plotted and used to form a distribution of 

likelihood for the predictand. 
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7.2.2 Predictive likelihood in the literature 

Fisherian Predictive Likelihood 

Likelihood inference on prediction is based on the initial suggestion of Fisher 

(1956). Fisherian predictive likelihood (also termed profile predictive likelihood) 

is defined as: 

 ( ) ( ) ( )| sup ; ;P y zL z y L y L z
θ

θ θ= (7.1) 

This formulation states that the likelihood of the predictand, z, given the data, 

y, is proportional to the likelihood of both the data ( yL ) and the predictand 

( zL ) for a maximized parameter vector, θ . It can be seen that the parameter 

vector of the distribution is considered as the nuisance parameter and is 

eliminated by maximization. To form a distribution of the predictand, a range 

of predictand values is considered and the Fisherian predictive likelihood 

calculated for each. The results are then usually normalized to represent a 

distribution (see Lejeune and Faulkenberry 1982, for an early example).  

Following the description in Chapter 3, and denoting the PDF of the 

distribution by ( )g ⋅ , the likelihood function for the data vector, y is: 

 ( ) ( )
1

; ;
n

y i
i

L y g yθ θ
=

=∏ (7.2) 

For a postulated value of z, and denoting the PDF of the predictand by ( )zg ⋅ ,

the likelihood function is: 

 ( ) ( ); ;z zL z g zθ θ= (7.3) 

as there is only a single value: z. Similarly to ordinary likelihood, it is easier to 

use the log-likelihoods – maximization of this function is equivalent to 
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maximization of the likelihood function itself. Therefore, (7.1), in conjunction 

with (7.2) and (7.3), is written as: 

 
( ) ( ) ( ){ }

[ ] [ ]
1

log | sup log ; log ;

sup log ( ; ) log ( ; )

P y z

n

i z
i

L z y L y L z

g y g z

θ

θ

θ θ

θ θ
=

    = +    

 
= + 

 
∑

(7.4) 

This function is evaluated for a range of values of z. The area under the curve of 

{ },pL z is normalized to unity and a distribution of the predictand results. 

Mathiasen (1979) notes some problems with the Fisherian predictive likelihood. 

Of particular relevance to this work is that each function maximization does not 

account for the variability of the derived parameter vector, θ .

Modified Predictive Likelihood 

Many forms of predictive likelihood have been proposed in the literature to 

overcome the problems associated with the Fisherian formulation – Chapter 2. 

In this work, the predictive likelihood method proposed by Butler (1989), based 

on that of Fisher (1956) and Mathiasen (1979) and also considered by Bjørnstad 

(1990), is used. Lindsey (1996) describes the reasoning behind its development. 

This predictive likelihood is the Fisherian, modified so that the variability of the 

parameter vector of each maximization is taken into account. 

Edwards (1992) describes the meaning of the likelihood (multi-dimensional) 

surface at the point of maximum likelihood – Chapter 3. In particular, the 

determinant of the Fisher information matrix, ( )θI , may be seen as the 

volume under the surface of the likelihood function at the maximum likelihood 

estimate (MLE). Therefore larger volumes (determinants) represent less 

information and vice versa as smaller volume indicates a narrower likelihood 

function which corresponds to more confidence (information) about the 
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parameter values. Mathematically, it is the absolute value of the determinant 

that is taken as volumes cannot be negative. Further, it is the square root of the 

determinant that is used as a measure of the variability of the parameter vector 

in the region of the estimate. Edwards (1992), for example, explains this as 

relating the width of the likelihood surface at some point below the maximum 

to the information matrix linearly: it is the square root of the determinant that 

indicates the ‘multi-dimensional width’ of the likelihood surface at the estimate. 

This metric thus forms a measure of credibility for a given parameter vector  

To allow for the effect of parameter variability on Fisherian predictive 

likelihood, the width of the likelihood surface is used to weight the values of 

Fisherian predictive likelihood obtained for each parameter vector corresponding 

to each of the values of predictand. In this way, the variability of the 

parameters is included in a relative sense. Of course as the resulting function is 

normalized to a distribution, this relativity is adequate. 

One further modification is required to the Fisherian predictive likelihood. The 

parameter vector determined for each value of the predictand, based on the 

maximization of (7.4), is dependent on both the data, y, and z and is therefore 

denoted zθ , whereas that for the data solely is denoted θ . Therefore the 

parameter transform modification, zθ θ∂ ∂ , is required so that the problem is 

in the domain of the ‘free’ parameter vector, θ (refer to Thomasian (1969) for 

further information on parameter transformations). 

The modified profile predictive likelihood that results from these modifications 

to the Fisherian predictive likelihood is given as: 

 ( ) ( )

( )

| ;
| P z

MP
z

z

L z y
L z y

θ
θ θ
θ

=
∂
∂

I
(7.5) 
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Butler (1989) points out that the parameter transform zθ θ∂ ∂ is constant. 

Therefore normalization of the area under ( ) ( )| ;P z zL z y θ θI amounts to 

evaluation of zθ θ∂ ∂ and hence ( )|MPL z y is the density of the predictand. 

7.2.3 Specific formulations 

Introduction 

Having outlined the general theory of predictive likelihood, the formulation used 

in applications of the theory in the statistical literature is considered. The 

extension of the method to problems of composite distribution statistics is then 

outlined. 

The GEV distribution is used throughout the work that follows and, though 

also given in Chapter 3, several aspects are repeated here for reference. The 

distribution function of the GEV is given by: 

 ( )
1/

; exp 1 yG y
ξ

µθ ξ
σ

  −  = − −       
(7.6) 

where ( ), ,θ µ σ ξ= . The PDF and likelihood function are, respectively: 

 ( ) ( )
1/ 1

1; ; 1 yg y G y
ξ

µθ θ σ ξ
σ

− −
−  − = ⋅ +  

  
 (7.7) 

 
( ) ( )

1

1 1

log ; ;

1log 1 log

y y

n n

i i
i i

L y l y

n x x ξ

θ θ

σ
ξ = =

  = 
 

= − − − − 
 

∑ ∑
(7.8) 

1where i
i

yx µξ
σ
− = −  

 
and is the reduced variate of the GEV distribution. 
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Single Mechanism Predictive Likelihood 

The terms of equation (7.4) are determined in the context of a single GEV 

distribution problem. The likelihood of the data, ( );yL yθ , is as defined in 

Chapter 3 and is given in (7.8) for the GEV distribution. Following the 

definition of likelihood in Chapter 3, that of the predictand, ( );zL zθ , requires 

use of the distribution of z: an example is shown in Figure 7.1. Following 

Section 3.4.1, the distribution of the predictand, from m repetitions of the 

sample block size, is given by: 

 ( ) ( ) ( ) 1
; ; ;

m
zg z m g z G zθ θ θ

−
 = ⋅ ⋅   (7.9) 

and it is this PDF that is graphed in Figure 7.1. In this equation, the parameter 

vector θ is based upon the data y alone. Therefore, the likelihood of observing a 

given predictand, z, is simply [ ]log ( ; )zg z θ and this is the approach used by 

Davison (1986). It is also possible, using the GEV transforms of Appendix B, to 

derive the parameters of the ( );zg z θ distribution explicitly. 

It may be thought that the maximization of this function may be governed by 

the data vector, y, as it consists of n elements, whereas the predictand is a 

single value. However, the contribution made to this joint log-likelihood 

function is of order m, and if m and n are comparable, then the contributions 

from the predictand and the data are also comparable. 

Composite Distribution Predictive Likelihood 

Application of predictive likelihood to the method of composite distribution 

statistics (CDS) is complicated by the nature of the composite distribution, 

where for N mechanisms, its distribution is: 
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( ) ( )
1
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σ

=

=

=

   − = − −         

∏

∑
(7.10) 

The probability density function ( )Cg y can be evaluated numerically and 

central differences are used in this work. The likelihood of the data for the CDS 

distribution is defined in this work to be the joint likelihood of each of the 

mechanisms of the CDS distribution: 

 
( ) ( )

( ),
1 1

log ; ;

log ;
j

y y

nN

j j j i
j i

L y l y

g y

θ θ

θ
= =

  = 
   =     

∑ ∑
 (7.11) 

where ( );j j jg yθ is the PDF of the jth loading event. Also, the distribution of a 

maximum of m sample repetitions is defined by: 

 
( ) ( )

( ) ( ) ( )
,

1
,

m
Z C C

m
Z C C C

G z G z

g z m g z G z
−

 =  

 = ⋅ ⋅  
(7.12) 

The likelihood of the predictand, given the initial distribution is: 

 
( ) ( )

( ) ( ){ }
,

1

log ; log

log

z Z C

m
C C

L z g z

m g z G z

θ
−

   =   

 = ⋅ ⋅  
 (7.13) 

This formulation is difficult to implement and other formulations have also been 

considered. However, these have not exhibited the same level of performance. 

Therefore, numerical tools have been employed to ensure robustness in the 

formulation presented, and these are outlined in Section 7.3.3. 
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7.3 Performance and Implementation 

7.3.1 Introduction 

Though the theory and formulation of the predictive likelihood approach have 

been stated, its performance must be compared to other methods with the same 

goal. A data set, with associated published results, is used as the basis for 

several methods of estimating the distribution of return levels for a 100-year 

lifetime. In this way, the behaviour of predictive likelihood is examined. 

However, only the single distribution formulation can be assessed in this way. 

Predictive likelihood analysis is dependent on substantial numerical 

computation. Its sensitivity to inputs such as sample size, the order of the 

sample data, as well as final distribution fitting, is assessed. The algorithms 

used in this work are also explained. Though the formulation is clearly defined, 

specific approaches are used to enable robust estimation. 

7.3.2 Performance evaluation 

Coles (2001a) describes a study of the annual maximum sea levels at Port Pirie, 

Australia. An extreme value analysis, based on the GEV distribution, is 

presented; the results of which may be used as a basis for what follows. The 

data set is available as part of the ismev library for the R language (R

Development Core Team 2005) and is shown in Figure 7.2.  

The maximum likelihood estimates of the GEV parameters for the Port Pirie 

data are found to correspond to those of Coles (2001a) and are: 

 ( ) ( )ˆ ˆ ˆ ˆ, , 0.050, 0.198, 3.875θ ξ σ µ= =  (7.14) 
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Figure 7.2: Annual maximum sea levels at Port Pirie, Australia. 

In general, for the n-block return period, the return level, nz , is that value that 

satisfies the equation: 

 
1/

11 exp 1 nz
n

ξ
µ

ξ
σ

  −  − = − −       
(7.15) 

Solving this for nz , gives: 

 11 log 1nz
n

ξ
σµ
ξ

    = + − − −       
(7.16) 

The maximum likelihood estimate of nz is got by substitution of the maximum 

likelihood parameter estimates, ( )ˆ ˆ ˆ ˆ, ,θ ξ σ µ= into (7.16). In the case of the Port 

Pirie data, and for a 100-year return period, this yields 100ˆ 4.688z = and again 

corresponds to that of Coles (2001a). 

Parametric Bootstrap and the Delta Method 

A parametric bootstrap is used to assess the variability of the 100-year return 

level for the Port Pirie data. The distribution fitted to the data, defined by the 
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parameters of (7.14), is used to generate synthetic blocks of data of the same 

size as the original set. A shortfall of this approach is that the parametric 

bootstrap method does not account for parameter variability. A GEV 

distribution is fit to each synthetic data set and used to estimate the 100-year 

return level. 100 such return levels are got, and the results are shown in Figure 

7.3. Also shown in this figure is the result of the application of the delta 

method, described in Chapter 3, which assumes asymptotic normality of the 

predictand. It can be seen that this is not reasonable as the distributions are 

quite different. 
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Figure 7.3: Parametric bootstrap and delta method approaches; (a) bootstrap 

replications on Gumbel paper, and (b) the return level distributions. 

Profile Likelihood for Return Level 

Many authors (Coles 2001a, Smith 2001, Gilli and Këllezi 2005) use the profile 

likelihood technique to estimate the distribution of the predictand. The method 

involves re-parameterizing the GEV distribution in terms of a given value of nz ,

as follows from (7.16): 
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11 log 1nz
n

ξ
σµ
ξ

    = − − − −       
(7.17) 

Use of the location parameter given by (7.17) in the likelihood equation of the 

GEV distribution – equation (7.8) – renders the problem in terms of the 

parameters ( ), , nzθ ξ σ= . Then, for a range of values of nz , the remaining 

parameters are maximized for each nz . The likelihood values that result from 

each nz maximization give the profile likelihood for nz – as noted in Chapter 3. 

Figure 7.4 shows the profile likelihood curve that results from the application of 

this method (shown as the ‘re-parameterized’ curve) to the Port Pire data. Also 

given in this figure is the location of the maximum profile likelihood estimate 

(which is the same, by definition, as the likelihood function estimate), and the 

upper and lower 95% confidence intervals derived from the method outlined in 

Chapter 3, Section 3.3.4. Explanation of the predictive likelihood curve follows. 
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Figure 7.4: The profile likelihood for return level and predictive likelihood 

methods applied to the Port Pirie data. 
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Predictive Likelihood 

The single distribution method of predictive likelihood (Section 7.2.3) is applied 

to the Port Pirie data. The results of the Fisherian and modified predictive 

likelihood approaches are kept separate in order that the effect of the 

modifications for parameter variability may be seen. 

Firstly, the Fisherian predictive likelihood is evaluated for a range of return 

levels, shown in Figure 7.4 along with the profile likelihood approach. It is not 

the absolute value of this curve that is of interest, rather its relative values. The 

results are more easily assessed though consideration of the maximum predictive 

likelihood estimate of 100z and the 95% confidence intervals. It can be seen that 

this approach gives wider confidence bands for the return level than those of the 

profile likelihood method. Also, and of significance, is that the maximized 

estimate of return level is different – in this case, 100ˆ 4.638z = .

The explanation for the differences in these two approaches provides useful 

insight into the predictive likelihood approach. Only one value of return level is 

considered: the maximum (and re-parameterized profile) likelihood estimate, 

100ˆ 4.688z = . For this return level, Figure 7.5 illustrates the two approaches. The 

component likelihood values for both methods and both the data and predictand 

are given in Figure 7.5. It can be seen that the profile-likelihood approach gives 

a higher value at which the data likelihood is maximized compared with that of 

the predictive likelihood (4.34 > 4.30). This is to be expected, as this method is 

based solely on the data. However, as the predictive likelihood approach is 

balancing both the data and the predictand, its joint likelihood (data and 

predictand) is greater than that of the profile likelihood approach (5.25 > 5.19). 

This is due to the difference in the likelihood of the predictand under the two 

approaches (0.96 > 0.85). 
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Figure 7.5: Comparison of profile likelihood (red elements) and predictive 

likelihood (black elements) approaches for a single return level. 

In the above description, under both models the distribution of maxima is that 

of equation (7.9). Also, (as commented upon earlier) the contribution to the 

predictive likelihood of the predictand can be significant, and in this case is only 

one order removed from that of the data. 

For this example, Figure 7.6 shows the basis of the modifications required to 

allow for the variability of the parameter vector. Figure 7.7 illustrates the 

Fisherian and Modified Predictive Likelihood distributions, along with the 

weighting term applied to PL to determine MPL . It can be seen that the 

weighting results in a slightly longer upper tail for MPL , reflecting the 

uncertainty in the parameters. However, the difference overall is slight. 
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Figure 7.6: Modification for parameter variability for the Port Pirie example: 

(a) determinant; (b) volume under the likelihood surface; (c) multi-dimensional 

likelihood surface width, and; (d) resultant relative weighting factor. 
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Figure 7.7: Fisherian, PL , and Modified Predictive Likelihood, MPL , results: (a) 

distributions, and; (b) modification weights for parameter variability. 

Comparison of Approaches 

A comparison of the distributions obtained from each of the methods outlined is 

given in Figure 7.8. It is clear that each distribution has a mode of 

approximately the same value. This is to be expected and usually lies at the 

maximum likelihood return level estimate. What is also clear, and of more 

importance, is the skewness of the distributions: the bootstrap distribution does 

not exhibit much skewness (and, by definition, neither does the delta method 

distribution). In the light of the results of the profile and modified predictive 

likelihood results, this underestimation of the skewness of the distributions is 

problematic. It is possible that a non-parametric bootstrap study may exhibit 

better behaviour, though it is not studied here. 
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The profile and modified predictive likelihood approaches compare quite well. 

Of significance though, is the larger variance of the modified predictive 

likelihood. This difference (as considered above) is due to a combination of the 

allowances for parameter variability and the joint likelihood of the data and 

predictand. 
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Figure 7.8: 100-year return level distributions for the Port Pirie data. 

7.3.3 Implementation aspects 

Save for Davison (1986), the statistical literature on predictive likelihood does 

not generally consider its implementation. The algorithm used is presented, 

along with some of the incident calculations. Following this, aspects related to 

the numerical computations are examined. 

CDS Predictive Likelihood Algorithm 

For each value of the predictand, equation (7.1) is maximized with the terms 

given by equations (7.11) and (7.13) (and correspondingly for the single 

mechanism predictive likelihood). As up to four event types are in a typical 

CDS problem, the maximization has a set of up to 12 parameters. Sequential 

quadratic programming optimization is used in this work to minimize the 
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negative of the predictive likelihood function. A MATLAB toolbox is developed for 

this purpose as part of this work. 

In the optimization, each GEV parameter vector must be limited to operate on 

the data corresponding to its event-type. Therefore the optimization must be 

performed with parameter bounds appropriate for each event-type. The bounds 

used in this work are based on deviations from the ordinary maximum 

likelihood estimates. The location and scale parameters are allowed to vary as: 

 { }; where , ,λ λ ψλ λ µ σ ξ
ψ

≤ ≤ = (7.18) 

between bounds of 1.1ψ = for ,µ σ and 1.4ψ = for ξ . Whilst seemingly 

restrictive, such tight bounds have been found necessary to prevent interaction 

of parameters on data from other event-types. However, once such interaction is 

prevented in this manner, the optimized parameter values remain within their 

bounds. 

For numerical stability, it is found beneficial for each iteration of the 

optimization to start on the initial maximum likelihood estimate, rather than 

the final estimates of the previous iteration. Though more computationally 

expensive, each iteration is therefore independent, and the risk of divergence of 

the solution is reduced. However, there remain situations in which an iteration 

can diverge from solution. Therefore an intermediate optimization is carried out 

to provide initial parameter estimates for each iteration – the function is 

constrained to return the predictand it is optimizing for by the following: 

 ( )1 ; 0C zz G p θ−− = (7.19) 
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where zp is the probability level for the predictand, z. Having obtained the 

parameter vector that solves this constraint function, the second optimization is 

commenced with this parameter vector as the start point. 

This process may be explained by reference to Figure 7.5. The first optimization 

obtains the parameter vector that has the predictand as the mode of the 

distribution of n-block maxima, ( );zg z θ . The second optimization releases this 

requirement, and the predictand is allowed to occur anywhere within ( );zg z θ ,

once the overall function is maximized. 

The solution that results at each iteration is then processed using numerical 

derivatives to determine the (up to 12×12-dimension) Hessian matrix of the 

solution – the observed information matrix. Also, the maximized value of 

predictive likelihood is brought forward to the analysis for the distribution of 

predictive likelihood. 

Establishing the Predictive Distribution 

Curves of log predictive likelihood, such as those of Figure 7.4, are used to 

determine the predictive Fisherian distribution ( );
PLf z y . Firstly, the log 

predictive likelihoods are defined as: 

 ( ) ( )| log |P Pl z y L z y =   (7.20) 

and its maximum value – as per Figure 7.4, for example: 

 ( ) ( )ˆ | sup |P P
z

l z y l z y =   (7.21) 

Then, the curve of likelihood ratios is determined as: 

 ( ) ( ) ( ){ }* ˆ; exp | |
PL P Pf z y l z y l z y= − (7.22) 
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This curve is then normalized to the predictive distribution: 

 ( ) ( )
( )

*

*

;
;

;
P

P

P

L
L

L

f z y
f z y

f z y
=
∫

(7.23) 

The points so-defined, can be seen in Figure 7.9(a) for example. 

Fitting the Predictive Distribution 

It is to be noted that only discrete values of PL are calculated at discrete 

intervals of return level. Therefore, for this work, a GEV distribution is fitted 

through the discrete points that result after normalization of the area under the 

points to unity. A least-squares fit through these points is not appropriate as it 

unduly weights the larger relative likelihoods by assigning a weight of unity to 

all points (Weight Function 1). To counteract this effect, a weight equal to the 

reciprocal of the y-value could be used so that the least-squares fit is biased to 

smaller magnitudes (Weight Function 2). However, as it is the upper tail that is 

of primary interest, the approach adopted in this work is to use a weigh of unity 

for all points below the mode of the distribution, and to use a weight equal to 

the reciprocal of the y-value for points above the mode (Weight Function 3). 

The application of these fitting methods is shown in Figure 7.9. It can be seen 

that the weighting results in a slightly longer upper tail for MPL , reflecting the 

uncertainty in the parameters. However, the difference overall is slight. 

From Figure 7.9, it can be seen that the upper tail is well approximated by each 

fit resulting from Weight Functions 2 and 3 and is not fitted quite as well by 

Weight Function 1 (standard least-squares). However, it can also be seen that 

Weight Function 3 provides a better fit near the mode of the data than Weight 

Function 2. Therefore, this weight function is used in this work as it describes 

both the upper tail and the mode reasonably well. 
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Figure 7.9: GEV distribution fits to the discrete predictive likelihood results; (a) 

the three distributions resulting from (b) the three weight functions. 

Effect of Data Scale 

Due to the small order of numbers involved in predictive likelihood, numerical 

problems can arise from the state of the information matrix. An example is the 

numerical differentiation involved in calculating the information matrix. A 

useful measure of its stability with respect to numerical computations is the 

matrix condition number (Golub and Van Loan 1996). Low order condition 

numbers are said to be well-conditioned whereas condition numbers of large 

order are considered ill-conditioned. The condition numbers of the information 

matrices evaluated at each predictand as part of the Port Pirie data are shown 

in Figure 7.10. The system is reasonably well-conditioned. 
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Figure 7.10: Information matrix condition numbers for the Port Pirie predictive 

likelihood example. 

In this work, it has been found necessary to scale the input data to the 

predictive likelihood algorithm so that its order is less than 10. Higher order 

numbers exhibit severe ill-conditioning of the matrices with resultant effects on 

the modified predictive likelihood distribution. Figure 7.11 shows an example of 

these problems in which the Port Pirie data is scaled by a factor of 100. The 

plot corresponds to Figure 7.6 and Figure 7.10 and may be compared. It can be 

seen that the effect of the scale of the data is significant. 

Also examined, is the influence of sample size and the inherent random 

variation of the data. Random numbers are generated from a GEV distribution 

( )0.15; 0.45;1.0θ = for various sample sizes and used as the basis for a predictive 

likelihood analysis. This is repeated three times and the results plotted in Figure 

7.12(a) and (b). It can be seen that as the sample size increases there is 

considerable variability in the determinant of the information matrix, but that 

the condition number is stable for sample sizes of about 150. 
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Figure 7.11: Information matrix diagnostics for the scaled Port Pirie data: (a) 

resultant distributions; (b) condition numbers; (c) determinant, and; (d) weight. 
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Figure 7.12: Numerical stability: (a) variation of the determinant of 3 runs with 

increasing sample size; (b) the condition number of the information matrix for 

those 3 runs, and; (c) the determinant for many runs of a single sample size. 

The variability of the determinant for a given sample size is also examined, and 

the results are shown in Figure 7.12(c). It can be seen that there is variability 

but the determinant remains within a certain order. 
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7.4 Results of Application 

7.4.1 Application to theoretical examples 

The examples presented in Chapter 6 stipulate distributions that reflect the 

usual relationship between loading events. Samples from these distributions are 

used to simulate the statistical analysis of bridge traffic loading. These examples 

are used here to assess the accuracy of the composite distribution predictive 

likelihood presented in Section 7.2.3. A random data sample is generated and a 

predictive likelihood analysis is performed. The results are assessed against the 

simulated distribution of return level which are given in Chapter 6, but repeated 

here also. 

For Example 3 of Study 1, the results are shown in Figure 7.13. The CDS 

determined return level is shown in the figure (Sample Return Level), along 

with the exact 100-year return level distribution (Exact) determined from the 

stipulated parent distributions. Also shown is the GEV-fitted distribution of 

simulated return levels (CDS Sims) as reported in Chapter 6. These results are 

compared with the predictive likelihood distributions: the first are the individual 

points of predictive likelihood (CDS-PL) and the second is the GEV distribution 

fitted to these points (PL-GEV), as explained previously. It is to be noted that 

the modification due to parameter variability is not made here as the 

information matrices exhibit numerical instability. 

The results displayed in Figure 7.13 are generally excellent: the mode and the 

upper tail of the exact distribution are well represented by the predictive 

likelihood distribution. The left tail is not approximated as well. Considering 

that the 100-year return level of the sample is to the right of the actual mode, 

the predictive likelihood distribution displays robustness in its estimation of the 
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mode of the exact distribution. Further, the estimation of the load effect with 

10% probability of exceedance in 100 years through the use of predictive 

likelihood coincides well with that of the exact distribution. 
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Figure 7.13: Predictive likelihood result for Study 1, Example 3 of Chapter 6. 

The same procedure is used with the distributions of Study 2, Example 3 in 

Chapter 6 and the results are plotted in Figure 7.14. In this case the results are 

not as good as the previous example. The predictive likelihood distribution 

(CDS-PL) is shown without a GEV distribution fit, as it would clearly not be 

appropriate. The distributions of simulated 100-year return level from Chapter 6 

(CDS Sims) and exact 100-year return level are given. The 100- and 1000-year 

return levels, estimated from the sample using usual extrapolation, are plotted, 

as well as those estimated directly from the predictive likelihood distribution 

using numerical integration (PL 50 and 90-percentiles respectively). 
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Figure 7.14: Predictive likelihood result for Study 2, Example 3 of Chapter 6. 

It is clear from Figure 7.14 that the predictive likelihood distribution (CDS-PL) 

does not reflect the exact 100-year return level distribution well. In fact the 

predictive likelihood distribution exhibits composite behaviour – it is a 

distribution formed from differing underlying phenomena. It does not require 

knowledge of the component distributions to observe that this is indeed the 

case. Figure 7.15 shows the distribution history of the predictive likelihood 

maximizations, from which it may be seen, that initially, the 1-truck mechanism 

governs until z moves past its region of influence, at which point the 4-truck 

mechanism begins to govern. This results in the discontinuity in the derived 

distribution, as well as the long upper tail. There is a discernable gap in the 

sequence of 4-truck distributions at the discontinuity level from which it is clear 

that the 4-truck mechanism begins to govern. 
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Figure 7.15: History of predictive likelihood maximizations (overlaid plot), 

showing each predictand, data (crosses), and the component distributions. 

Before further consideration of the result, it is important to recognize that the 

load effect with 10% probability of exceedance in 100 years is conservatively 

estimated by the predictive likelihood distribution (PL 90-percentile). Therefore, 

in a practical application, use of the predictive likelihood approach remains 

better than estimation of the 1000-year return level, which may be seen from 

Figure 7.14 to be non-conservative. 

To investigate further, the stipulated (Given) and sample-fitted (Sample) parent 

distributions are given in Figure 7.16. Also given, for direct comparison, are the 

exact and predictive likelihood distributions from Figure 7.14. It can be seen 

from Figure 7.16(b) that at the 100-year extrapolation level, the 2- and 4-truck 
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distributions based on the sample are very close, and are quite different from 

the exact distributions. It may be inferred that this has led to the large mode of 

the predictive likelihood distribution: both 2- and 4-truck events are 

contributing. In the case of the exact distribution, with which the derived 

predictive likelihood distribution is being compared, it can also be seen from 

Figure 7.16(b) that, at the level of interest, the 4-truck distribution clearly 

governs. Such governance results in the clear uni-modal exact distribution 

observed. 

To conclude, it appears that two factors have combined to result in a predictive 

likelihood distribution that does not closely resemble the exact distribution: 

• Due to sampling variability the GEV fits are quite different to the exact fits 

at the return level of interest, and this results in the crossover point being 

close to the return level of interest (100-year level); 

• The crossover point of the given distributions is slightly below the return 

level of interest, and so there is little mixing in the exact distribution. 

Though these factors have combined to give an inaccurate distribution of 100-

year return level, the 1000-year return period derived from the predictive 

likelihood distribution (128.8) still shows smaller error than the usual 

extrapolation technique (121.5) when compared with the exact return level 

(126.0). Further, factors that combine to give inaccurate predictive likelihood 

distributions may be identified from the data and other techniques may be 

employed in these cases, such as the application of CDS to individual predictive 

likelihood distributions for each mechanism. 
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7.4.2 Application to Bridge Loading 

The results of the 1000-day simulation of Auxerre traffic presented in Chapter 

6, are analysed using predictive likelihood. In general the information matrices 

exhibited considerable numerical instability and so the modification for 

parameter variability is not made to the results presented. In any case, this 

modification is generally slight – as may be seen from Figure 7.7(a). The 

predictive distributions of 100-year load effect are presented in Figure 7.17 to 

Figure 7.19. Also shown in these figures is a GEV fit to the predictive 

distribution. The GEV distribution is considered reasonable as it is sufficiently 

flexible to fit a wide range of uni-modal predictive likelihood curves, and also is 

the exact form of the distribution of return level through application of the 

stability postulate. Further, the load effect with 10% probability of exceedance 

in 100 years is indicated both for the predictive likelihood points (PL RL) and 

the GEV fit to these points (GEV PL fit). Also given in each figure is the usual 

1000-year CDS-derived return level (CDS RL). Appendix C provides tables of 

results as well as plots showing the predictive likelihood optimizations. 

It is clear that some of the GEV fits to the raw predictive likelihood points are 

not obtained through fully objective means. In such cases, the approach is to fit 

the upper tail more closely than either the lower tail or the mode. Due to the 

numerical nature of the predictive distributions themselves, such GEV fits may 

be considered as a smoothing process. In any case, the results have been derived 

from both the fits and the raw distributions and may be seen to be comparable. 

The percentage differences, relative to the GEV fit, for the load effect with 10% 

probability of exceedance in 100 years are shown in Figure 7.20. 
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Figure 7.17: Characteristic load effect prediction for Load Effect 1. 
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Figure 7.18: Characteristic load effect prediction for Load Effect 2. 
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Figure 7.19: Characteristic load effect prediction for Load Effect 3. 



CHAPTER 7 –PREDICTION ANALYSIS 

249

-12

-10

-8

-6

-4

-2

0

2

10 20 30 40 50 60

Bridge Length (m)

D
iff

er
en

ce
(%

)

LE 1 - Pred Like LE 1 - CDS Extrap

LE 2 - Pred Like LE 2 - CDS Extrap

LE 3 - Pred Like LE 3 - CDS Extrap

 
Figure 7.20: Differences in characteristic load effect prediction for different 

methods relative to the GEV fit to the predictive likelihood results. 

It is evident from Figure 7.20 that the process of estimating the lifetime load 

effect directly from the predictive likelihood distribution, or the GEV fit to it, 

does not significantly affect the result – the maximum difference is about 3% for 

Load Effect 2, 40 m bridge length. Of more significance however, is the fact that 

the usual method of extrapolation to a 1000-year return period results in general 

non-conservative results (with the exception of Load Effect 2, 40 m bridge 

length), compared with either of the predictive likelihood-based results. The 

differences are not substantial, and this provides evidence that the results are 
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robust. Further, in the light of the results of Section 7.4.1, it may be surmised 

that the predictive likelihood results are closer to the actual lifetime load effect 

than those of the usual CDS extrapolation technique. 

The net effect of the CDS and predictive likelihood approaches is compared to 

the hybrid Conventional approach of Chapter 6, Section 6.2.3 in Figure 7.21. It 

can be seen that, when compared with the GEV fitted predictive likelihood 

lifetime load effects, the Conventional approach is non-conservative for Load 

Effects 1 and 3, whilst for Load Effect 2 it is conservative. The magnitudes of 

the differences are also significant for bridge load estimation. 
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Figure 7.21: Conventional approach result relative to the GEV PL results. 
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7.5 Summary 

In this chapter, the method of predictive likelihood is presented and applied to 

the bridge loading problem. Firstly, the approach used in the statistical 

literature is demonstrated and compared with published results for relevant 

examples and other methods of obtaining predictive distributions. Issues 

affecting the accuracy of the technique, mostly relating to the numerical 

processing, are examined and identified. 

An extension of predictive likelihood is presented which caters for composite 

distribution statistics problems. This method is then applied to problems for 

which the results are known. Situations favourable and unfavourable to the 

accuracy of the method are identified therefrom and shown to be identifiable in 

a practical application. The method is then applied to the results of bridge load 

simulations. Predictive likelihood generally gives larger lifetime load effect 

values than the usual return period approach. This is as a result of inclusion of 

sources of variability within the predictive likelihood distribution. Finally the 

sum-total effect of the composite distribution statistics and predictive likelihood 

methods is established in comparison to the hybrid Conventional approach. The 

differences in lifetime load effects are considerable, yet within reason, and are 

also dependent on the influence line and bridge length. This is to be expected 

from the physical nature of the problem. 
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Chapter 8 - TOTAL LIFETIME LOAD EFFECT 

8.1 Introduction 

Often in engineering it is not the outcome of a single stochastic process that is 

of interest, but the combination of several processes. For example, critical 

combinations of sea level and wave height are of interest to designers of coastal 

defences. The work presented thus far has focused on a single outcome from 

truck crossing events: static load effect.  

It is well known that truck crossing events cause the truck and bridge to 

interact dynamically. With such interaction there is an associated dynamic 

component to the loading that results. When this is allowed for, the load effect 

is known as the total load effect – as distinct from that due to static 

considerations only. The total load effect is usually greater than the static load 

effect, but can be less in some cases.  

From studies that separate the dynamic and static loads induced by loading 

events, the dynamic amplification factor (DAF) is defined as: 

 Total

Static

S
S

ϕ = (8.1) 

where S represents the load effect under consideration. Many studies have been 

carried out to determine, either by measurement or simulation, the DAFs that 

occur under certain circumstances (Brady 2004). Based on such studies, bridge 

loading models include allowances for dynamics. 

The Eurocode (EC 1: Part 3, 1994) load model for normal traffic loading (LM1) 

is given in Figure 8.1(a) for a two-lane bridge. These loads, so-defined, include 
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an allowance for dynamic interaction, given by Figure 8.1(b). The origins of this 

work are presented by Bruls et al (1996). O’Connor (2001) also provides a 

thorough background. 

The Eurocode load model is developed from simulation of static traffic actions, 

as described in Chapter 2. The dynamic amplification factors of Figure 8.1(b) 

are applied to the 1000-year characteristic static load effects. As the worst static 

and dynamic cases are combined, such loading is conservative because it does 

not recognize the reduced probability of two extremes (static and dynamic 

aspects) occurring simultaneously. 
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Figure 8.1: Eurocode Load Model. 

The bridge-truck(s) interaction is sufficiently complex that the dynamic aspect 

of the load effect may be considered as a random variable. Therefore, with any 

given crossing event, there are two resulting processes: static and total load 
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effect. For the assessment of bridges, it is critical combinations of these two 

processes that are of interest. 

Multivariate extreme value theory is the statistical tool that is used to analyse 

critical combinations of several processes. Such an approach is more reasonable 

as it includes the respective probabilities of occurrence. This theory is used here 

to incorporate the dynamic interaction of the bridge and trucks into an extreme 

value analysis for total load effect. The results of this analysis are used to 

determine a dynamic allowance factor that may be applied to the results of 

static simulations to determine an appropriate lifetime total load effect. The 

analysis is performed for a notional site, derived from two well-studied sites. 
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8.2 Multivariate Extreme Value Theory 

8.2.1 Background 

In the univariate setting used thus far, the selection of block maxima is 

straightforward through the ordering of data from individual realizations. For 

multivariate processes though, the ordering of the data is complicated by the 

nature of the data. For example, in the case of bridge loading, a high-dynamics 

loading event does not necessarily have an associated high static load effect. It 

is usual in multivariate extreme value analyses to adopt the componentwise 

maxima approach (Coles 2001a, Demarta 2002). Considering the bivariate case, 

each realization, i, has an associated vector of outcomes, ( ),i iX Y , one for each of 

its statistical processes. For a block of n realizations, the vector of 

componentwise maxima is: 

 ( ),n X YM M=M (8.2) 

where 

 
1, , 1, ,

max , maxX i Y ii n i n
M X M Y

= =
= =

… …
(8.3) 

Similarly to the univariate extreme value approach of Chapter 3, the 

distribution of nM , as n →∞ , is a bivariate extreme value distribution if: 

 
[ ] ( )

( )
, ,

lim ,
X Y

n

n

P M x M y G x y

F x y
→∞

≤ ≤ =

=
(8.4) 

for some extreme value distribution ( ),G x y . This simplistic exposition avoids 

the normalizing constants required to account for degenerate cases – refer to 

Demarta (2002) and Tawn (1988) for further details.  
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In general, the marginal distributions,  

 
( ) ( )
( ) ( )

,

,
X

Y

G x G x

G y G y

= ∞

= ∞
(8.5) 

will be of GEV form (see Chapter 3, Section 3.4.3). One distribution that 

satisfies (8.4) is therefore: 

 ( ) ( ) ( ), X YG x y G x G y= ⋅ (8.6) 

but this distribution represents the case when the maxima are independent and 

is not the general case. Therefore a form of dependence measure is required for a 

general multivariate extreme value distribution. 

8.2.2 Correlation, copulae and dependence 

Correlation Coefficients 

The most widely used measure of dependence between random variables is 

Pearson’s correlation coefficient (Mood et al 1974): 

 ( ) ( )Cov ,
,

X Y

X Y
X Yρ

σ σ
= (8.7) 

where ( ) ( ) ( ) ( )Cov , E E EX Y XY X Y= − . This function reduces the complexity of 

any relationship between the random variables to a scalar value. Moreover, this 

form of correlation coefficient only measures the linear relationship between 

parameters – of course many other relationships are possible. Other forms of 

correlation coefficient are also used such as Kendall’s tau ( )τρ and Spearman’s 

rho ( )Sρ correlation coefficient, both of which are types of rank-correlation. In 

the bivariate case, they are related to Pearson’s correlation by: 
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1

1

2 sin

6 sin
2S

τρ ρ
π

ρρ
π

−

−

=

=
(8.8) 

Deterministic examples that fool these correlation measures are easy to find 

(such as exponents, logarithms, etc.). Figure 8.2 presents a random example in 

which two sets of a 1000 random deviates are generated according to two 

different models. However, both of the marginal distributions are distributed as 

standard normal deviates, and ( ), 0.7X Yρ = in both cases. It is clear from 

Figure 8.2(b) that there is significant tail-dependence between the two marginal 

distributions – this would have clear implications for extreme value statistics, 

for example. It is therefore clear that more complex dependency measures are 

required to preserve any observed relationship between the data vectors in a 

multivariate extreme value analysis. 
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Figure 8.2: Bivariate dependences of standard normal distributions, 

( ), 0.7X Yρ = : (a) Gaussian copula, and (b) Gumbel copula. 
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Copulae 

A function that links marginal distributions is known as a copula. Denoted as 

( )C ⋅ , a copula is defined as: 

 ( ) ( ) ( )( )1 1 1, , , ,d d dF x x C F x F x=… … (8.9) 

where ( )i iF x is the marginal distribution of the ith component. Every 

multivariate distribution has a copula (this is Sklar’s theorem – see Demarta 

2002, for example). From this representation, it can be seen that multivariate 

distribution modelling can be divided into two separate parts: modelling the 

marginal distributions; and, modelling the dependences through a copula. It is 

in this way that appropriate marginal and dependence structures can be 

developed separately and then combined.  

There are several restrictions on copulae, most easily summed up by noting that 

a copula may be considered as a multivariate distribution function with uniform 

marginals – as may be clear from (8.9).  A trivial example is the independence 

copula, for which ( ),IndC u v u v= ⋅ , and this is the copula of use in (8.6). 

Figure 8.3 plots the bivariate Gumbel (or logistic) copula, given by: 

 ( ) ( ) ( )
1 1

, exp log logGuC u v u v
β

β β  = − − + −    
(8.10) 

where β is the dependency measure. It is this copula that is used to link the 

standard normal marginal distributions of Figure 8.2(b).  Embrechts et al 

(2003) provide the link between a copula and Kendall’s tau. When applied to 

the Gumbel copula, this reduces to: 

 11τρ β
= − (8.11) 
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It is by inverting (8.11) and (8.8) that Figure 8.2(b) is drawn.  

Embrechts et al (2003) and Demarta (2002) also provide another statistic based 

on the copula – that of tail dependence. Tail dependence is a measure of the 

amount of dependence in the upper (or lower) quadrants of a multivariate 

distribution – see Figure 8.2 for example – and is given by: 

 ( ) ( )1 1

1
lim |U X Yq

P X G q Y G qλ − −

→
 = > >  (8.12) 

provided that the limit [ ]0,1Uλ ∈ exists. If ](0,1Uλ ∈ , X and Y are said to be 

asymptotically dependent in the upper tail; if 0Uλ = , X and Y are said to be 

asymptotically independent in the upper tail. Tail dependence is a copula 

property, and for the Gumbel copula, given by (8.10), it is given by: 

 2 2U
βλ = − (8.13) 
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Figure 8.3: Gumbel copula function. 
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When multivariate data is analysed to find extremes, the copula representing 

the dependence structure also becomes extreme (Segers 2004). Pickands (1981) 

provides an extreme-value copula: 

 ( ) ( ) ( )
( )

log
, exp log

logEV

v
C u v uv A

uv
   =       

(8.14) 

where the function ( )A ⋅ is known as the Pickands dependence function. Every 

copula has an associated dependence function, and it is this function which 

solely determines the interrelationship between the marginal distributions 

(Demarta 2002). In order that ( ),EVC u v be a copula, there are restrictions 

on ( )A ⋅ : ( ) ( )0 1 1A A= = and ( ) ( )max ,1 1Aω ω ω− ≤ ≤ for 0 1ω≤ ≤ . Also, for 

independence ( )0.5 1A = whilst for perfect dependence, ( )0.5 0.5A = .

8.2.3 Bivariate extreme value distributions 

Tawn (1988) describes the use of the extreme value copula. For the bivariate 

extreme value case, the GEV distribution is used to fit each marginal of the 

data. Transformed random variables are defined as the exponent of these 

marginal GEV distributions: 

 
1 2

1 1

1 2
1 1 2 2

1 2

1 ; 1x yz z
ξ ξµ µξ ξ

σ σ
+ +

      − −
= − = −      

      
(8.15) 

where ( )max ,0h h+ = and the GEV parameters are obtained using maximum 

likelihood fits to the data vectors X and Y separately. As a result of this 

transformation, the marginal distributions are now of the form: 

 ( ) ( )1 2
1 2;z z

X YG z e G z e= = (8.16) 
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Similarly to the univariate case, any multivariate extreme value distribution 

must be max-stable (as defined in Chapter 3). For the bivariate case with 

marginals given by (8.16) this requirement is met, as: 

 ( ) ( ), ,nG x y G nx ny= (8.17) 

Pickands (1981) shows that, through the use of the extreme value copula and 

the exponential marginals of (8.16), a general form of bivariate extreme value 

distribution is: 

 ( ) ( ), exp yG x y x y A
x y

  
= − +  +  

(8.18) 

where ( )A ⋅ is the Pickands dependence function previously mentioned: 

 ( ) ( ) ( ){ } ( )
1

0

max 1 , 1A q q dH qω ω ω= − −∫ (8.19) 

where ( )H ⋅ is a distribution function on [ ]0,1 . It is this last representation that 

gives rise to the restrictions on ( )A ⋅ noted previously. It can be seen from the 

above developments, that inference on the bivariate extreme value distribution 

depends only upon inference on ( )A ⋅ . Further, different choices of ( )H ⋅ , subject 

to the restrictions on ( )A ⋅ , give rise to different forms of bivariate extreme 

value distribution. Indeed, Stephenson (2005) discusses eight different forms of 

bivariate extreme value distributions that have emerged in the literature. Of 

particular interest in this work, for reasons to be given, is the Gumbel bivariate 

extreme value distribution: 

 ( ) ( ){ }1/ 1/
1 2, expGuG x y z z

αα α= − + (8.20) 
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where 0 1α< < and is similar to the dependence measure β of ( ),EVC u v .

Independence is represented by 1α = and complete dependence occurs when 

0α → . Coles (2001a) gives the choice of distribution function ( )H ⋅ that leads 

to this bivariate extreme value distribution. Capéraà et al (1997) describe the 

fitting of the dependence function ( )A ⋅ , upon which this work is based. 

8.2.4 Structure variable analysis 

As it is usually some combination of the individual variables comprising the 

multivariate analysis, Coles (2001a) describes the structure variable approach to 

inference on componentwise combination. This is expressed as a function of the 

individual components of the vector of componentwise maxima: 

 ( ) ( ),n X YZ M Mφ φ= =M (8.21) 

Hence Z is the structure variable of this bivariate problem. The function may be 

maxφ = , minφ = , φ = Σ for example. In the present context, total and static 

load effects are being considered and the dynamic allowance is the ratio. Hence: 

 ( ), X
X Y

Y

MZ M M
M

φ= =  (8.22) 

Denoting the bivariate density of ( ),X YM M by ( )g ⋅ , the distribution of Z is: 

 [ ] ( ) ( )
( )

,Z
V z

P Z z G z g x y dx dy≤ = = ∫ (8.23) 

where  

 ( ) ( ) ( ){ }, : ,V z x y x y zφ= ≤ (8.24) 

in which the notation refers to the set of all ( ),x y such that ( ),x y zφ ≤ . This 

relationship is presented figuratively for simple ( ),x yφ in Figure 8.4. 
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Clearly integration of (8.23) is not trivial for general φ . Coles (2001a) shows 

that for some functions its evaluation is not necessary ( maxφ = , for example). 

However, in the current context a more elaborate analysis is required. Coles also 

describes the univariate structure variable method, in which – for the current 

context – the distribution of Z is estimated by calculation of: 

 ,

,

; 1, ,X i
i

Y i

M
Z i n

M
= = … (8.25) 

and subsequent GEV fitting to the iZ . Coles describes several drawbacks of this 

approach, not least that the GEV distribution cannot be justified on any 

theoretical grounds. 

 
Figure 8.4: Figurative representation of the structure variable approach. 

 

YM

XM

( ),x y zφ =

( )V z

( ),g x y
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8.3 Statistical Analysis for Lifetime Load Effect 

8.3.1 Site-specific traffic load effect 

The Mura River Bridge, described in Chapter 4, is used in conjunction with 

WIM data from the A6 motorway near Auxerre, France, as the basis of this 

analysis. A finite element model of the bridge has been developed by Brady 

(2004), in which dynamic behaviour of the model has been calibrated against 

measured responses for single and two-truck meeting events. The notional site 

defined by the bridge and traffic is the basis for the application of multivariate 

extreme value analysis to determine lifetime dynamic allowance factors. 

For this site, 10 years of bi-directional, free-flowing traffic data is generated and 

this traffic is passed over the influence line for Beam 1 to determine the load 

effects that result. Each year of simulation is broken into ‘months’ of 25 days 

each and there are thus 10 such months in each year of simulation – as 

described in Chapter 4, Section 4.3.2. As a basis for further analysis, the events 

corresponding to monthly-maximum static load effect are retained. This is done 

to minimize the number of events that are to be dynamically analysed, as well 

as providing a shorter extrapolation ‘distance’.  

It is to be noted that events are not separated for the application of composite 

distribution statistics. From the results of Chapter 6, it is not expected that this 

will cause much inaccuracy due to the behaviour of load effects from similarly 

shaped influence lines to that here. In any case, the work that follows illustrates 

the general methodology, and this can be extended for CDS statistics readily. 

The 100 monthly-maximum loading events obtained from the simulations are 

analysed using the finite element bridge-truck interaction models developed by 
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Brady (2004) and Gonzalez (2001). Rattigan (2006) carried out the dynamic 

simulations as part of his doctoral research. Figure 8.5 illustrates a sample truck 

model and shows the model used for the bridge. Thus, the results of the 

simulations described is a population of 100 monthly-maximum loading events 

for which both total and static load effects are known; therefore the DAF for 

each is also known. 

(a) (b) 

Figure 8.5: Finite element models of (a) 5-axle truck and (b) bridge. 

Of the 100 monthly-maximum events, 20 are found to be 1-truck events, 77 to 

be 2-truck events and 3 are 3-truck events. This reflects the balance of 

frequency of occurrence with higher load effects observed in Chapter 6 and is 

also a function of the influence shape. 

The influence surface for Beam 1 is asymmetrical; therefore trucks in Lane 1 

dominate, reducing the effect of trucks in Lane 2. Therefore the monthly-

maximum events are derived from the occurrence of heavy trucks in Lane 1, and 

trucks with less extreme GVW in Lane 2. Figure 8.6 illustrates some examples 

of the monthly-maximum events; the prevalence of heavy trucks in Lane 1 (top 

lane) is evident. 
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(a) 1-truck; 

(b) 2-truck; 

(c) 3-truck; 

Figure 8.6: Examples of monthly-maximum events – GVW is noted on each 

truck in deci-tonnes and Lane 1 is uppermost. 

8.3.2 Preliminary statistical investigation 

Scatter plots of various variables are drawn, to investigate the results. Figure 

8.7 shows the total and static load effect values of individual maximum-per-

month loading events as a scatter plot. The results are in units of tenths of 

N/mm2, for numerical stability purposes. There is a relationship between static 

and total load effect – as may be expected. 

Scatter plots of DAF against total and static load effect are given in Figure 8.8. 

There is a positive correlation between DAF and total load effect. A less 
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significant relationship between DAF and static load effect can be seen from 

Figure 8.8. 
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Figure 8.7: Maximum-per-month static and total load effect (dN/mm2). 
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Figure 8.8: Scatter plots of DAF against total and static load effect (dN/mm2). 

It is possible, and conservative, to analyse this data in the following manner. 

The marginal distributions of total and static load effect can be estimated – the 

GEV distribution would be ideal for this. A distribution of dynamic ratio could 

then be numerically calculated as the quotient of these two distributions, and 



CHAPTER 8 – TOTAL LIFETIME LOAD EFFECT 

269

possibly fitted with its own GEV distribution. This procedure, however, fails to 

recognize the correlation between the variables, and is therefore conservative. 

For later comparison, the 90-percentile of the dynamic ratio distribution that 

results from this procedure is about 1.23 and this will be seen to be considerably 

different to the results of a more appropriate analysis. 

8.3.3 Multivariate extreme value analysis 

In the analysis that follows, software developed by Stephenson (2005) is used in 

conjunction with bespoke algorithms, written in the R language for statistical 

computing (R Development Core Team 2005). Stephenson’s (2003) method for 

simulating multivariate extreme value random variables is also used. 

To include the apparent relationship between the total and static load effect 

values, bivariate extreme value distributions (BEVD) are adopted. In the first 

instance BEVD is used to model the parent distribution of monthly maxima, 

and later it is used to model the lifetime distribution. 

The data is fitted using the Gumbel logistic bivariate extreme value 

distribution, given in equation (8.20). The marginal distributions are estimated 

using GEV distributions. The transformed variable approach of equation (8.15) 

is used. The results of the fit can be seen in Figure 8.9: subplots (a) and (b) 

show the quality of fit to the marginal distributions whilst Figure 8.9(c) shows a 

contour plot of the bivariate probability density function. 
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Figure 8.9: Results and diagnostic plots of the BEVD fit (dN/mm2): (a) 

Marginal distribution of total load effect; (b) marginal distribution of static load 

effect; (c) bivariate distribution, and; (d) dependency structure. 
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Figure 8.9(d) is of particular importance: this plot describes the empirical and 

fitted dependence structure of the data; the function ( )A ⋅ . From the properties 

of ( )A ⋅ discussed earlier, the line ( ) 1A ω = in Figure 8.9(d) represents perfect 

independence, whilst the triangular envelope describes perfect dependence. The 

solid line represents the fitted dependence structure, whilst the dashed line is 

the empirical estimate of the dependence in the data. It can be seen, therefore, 

that the dependence function is modelled quite well - this is the determining 

factor in the use of the Gumbel bivariate extreme value distribution in this 

work. The parameters of the BEVD model are given in Table 8.1. 

Marginal Distributions 

Total Load Effect Static Load Effect 

µ σ ξ µ σ ξ

69.72 3.851 0.2071 67.56 2.423 0.1233 

Dependence Measures 

BEV dependence parameter  Tail dependence 

0.5347α = Uλ = 0.5514

Table 8.1: Parameters of fitted parent bivariate extreme value distribution. 

8.3.4 Bootstrapping for lifetime load effects 

To estimate the distribution of lifetime load effect, and as it is not considered 

feasible to raise the fitted parent distribution to an appropriate power, a 

parametric bootstrapping approach is used. The 100-year lifetime of the bridge 

is simulated in each bootstrap replication. To do this, 1000 (100 years with 10 

‘months’ per year) synthetic monthly-maximum events are simulated from the 

BEVD model. The component-wise maxima (that is the, the maximum static 

effect, and the maximum total effect) are recorded. These values are therefore 

not related through an individual loading event. In this way, the maximum 
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total and static load effects from 1000 bootstrap replications of the bridge 

lifetime are noted; these points are given in Figure 8.10. 
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Figure 8.10: Scatter plots (showing linear regression lines) of (a) Total against 

Static load effect; and, Bridge Lifetime Dynamic Ratio against (b) Total, and; 

(c) Static load effect (dN/mm2). 

The ratio of static lifetime load effect to total lifetime load effect is termed here 

as the Bridge Lifetime Dynamic Ratio (BLDR). This recognizes that the same 

event is not necessarily responsible for the maximum lifetime total and 

maximum lifetime static load effects. Various plots are given in Figure 8.10 

relating to the output from the bootstrap replications. It can be seen that there 

is strong positive correlation between the total and static load effect; little linear 

correlation between the BLDR and total effect, and; a strong negative linear 

correlation between BLDR and static effect. This is significant; it means that 

the dynamic ratio is falling as more extreme load effects are considered. 
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Applying the univariate structure variable analysis method of Section 8.2.4 and 

equation (8.25), the distribution of BLDR is shown in Figure 8.11, fitted with a 

GEV distribution, ( )=1.058; 0.0109; 0.22442θ µ σ ξ= = = . It is to be noted that 

allowance for the relationship between the load effect components has reduced 

the 90-precentile dynamic allowance from 1.23 for perfect independence (as 

previously noted), to around 1.08 for modelled dependence. 

For design purposes, the structure variable analysis described is not fully 

appropriate: it is not a probabilistic return level of BLDR that is required, 

rather a value of BLDR that ‘links’ the characteristic static load effect value to 

the characteristic total load effect value through some form of dynamic ratio. 
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Figure 8.11: Empirical and fitted distribution of Bridge Lifetime Dynamic Ratio. 

8.3.5 Assessment Dynamic Ratio 

Due to the relationships apparent from Figure 8.10, a Gumbel bivariate extreme 

value distribution is fitted to the simulated lifetime maxima; the results are 

shown in Figure 8.12 and the parameters given in Table 8.2. 
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Figure 8.12: Bivariate extreme value lifetime load effect distribution (dN/mm2): 

(a) Marginal distribution of total load effect; (b) marginal distribution of static 

load effect; (c) bivariate distribution, and; (d) dependency structure. 
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Marginal Distributions 

Total Load Effect Static Load Effect 

µ σ ξ µ σ ξ

83.86 0.950 0.2425 78.81 1.079 0.1566 

Dependence Measures 

BEV dependence parameter  Tail dependence 

0.5513α = 0.5346Uλ =

Table 8.2: Parameters of 100-year lifetime fitted BEVD distribution. 

Figure 8.12(d) shows that there is dependence between the static and total load 

effect values for bridge lifetime – even though they are not related through 

individual loading events, and this must be a result of the dependence in the 

parent distributions. To relate the density plot of the bridge lifetime load effects 

and parent distribution, they are equally scaled and plotted in Figure 8.13. 

It is not the distribution of BLDRs that is of interest, rather, a BLDR that 

corresponds to a certain quantile for each of the marginal distributions. Such a 

BLDR is termed an Assessment Dynamic Ratio (ADR) and is defined as: 

 
( )
( )

1

1
X

q
Y

G q
G q

ϕ
−

−= (8.26) 

where q is the quantile of interest and the marginal distributions are defined in 

(8.5). For Eurocode design, 0.9q = for a 100-year design life: this is the 

appropriate value to relate lifetime static to total load effect values, and is 

shown in Figure 8.14. In general, qϕ is not monotonically increasing in q as it is 

subject to the form of the marginals. Where it is so, it is possible to define a 

distribution of ADR as: 

 ( )
( )

q
Q z

G z dqϕ ϕ= ∫ (8.27) 
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Figure 8.13: Parent and lifetime bivariate distributions (dN/mm2). 

where, using the notation of (8.24), 

 ( ) { }: qQ z q zϕ= ≤ (8.28) 

In appropriate cases, as outlined above, this is derived as: 

 ( )1
qG qϕ ϕ− = (8.29) 

hence, the probability density function may be derived as: 

 ( )
1

qd
g z

dzϕ

ϕ −
 

=  
 

(8.30) 
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Numerical differentiation is required for the evaluation of the PDF, so defined. 

 
Figure 8.14: Representation of the ADR for the Eurocode quantile. 

For many discrete quantiles – illustrated in Figure 8.15 – the total and static 

load effects are determined from the marginal distributions of the bivariate 

lifetime load effect distribution and the results are presented in Figure 8.16. 

The main theme that emerges from Figure 8.16 is that as load effect (be it 

static or total) increases, the ADR tends towards unity. This is manifest in 

Figure 8.16(b) and (c): in (b) it is clear that as the quanntile increases, the 

ADR reduces; whilst in Figure 8.16(c) it is apparent that the line of ADR is 

curving towards the line representing an ADR of unity as both load effects 

increase. For design however, in the 100-year lifetime of this bridge and traffic 

as measured, the ADR has not yet reached unity and it is the 90-percentile of 

ADR is appropriate. This value corresponds with an ADR of 1.0576. 
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Figure 8.15: Quantiles used for evaluating the ADR. 

The parameters of the marginal distributions result in a monotonically 

decreasing function qϕ in q – Figure 8.16(b). To apply the analysis of equations 

(8.27) to (8.30), the ADR is re-parameterized as: 

 1q qϕ ϕ= −� (8.31) 

and qϕ� is monotonically increasing in q as may be seen from Figure 8.17(b). 

Numerical differentiation is used to derive the points of Figure 8.17(a) from: 

 ( )
1

qd
g z

dzϕ

ϕ −
 

=  
 

�

�
(8.32) 

Using the curve-fitting methods outlined in Chapter 7, Section 7.3.3, a GEV 

distribution is fitted to the points of ( )g zϕ� and is shown in Figure 8.17(a). The 

parameters of this distribution are: ( )0.1624; 0.002463; 0.0642θ ξ σ µ= = − = = − .

This distribution may be used to find the return period at which 0qϕ =� and no 

allowance for dynamic interaction is required. The probability this occurs at is 

0.99996 and so the return period for zero dynamic interaction is 26659 

repetitions of the sampling period; and so in total, 2 665 970 years. Based on 
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this large figure, it is reasonable to note that some dynamics must feature as an 

element of loading for this specific notional site. 
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Figure 8.16: 100-year ADR diagnostics: (a) marginal CDFs (dN/mm2), (b) ADR 

by quantile, and (c) ADR against marginals and an ADR of unity (dashed). 
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Figure 8.18: 1000-year ADR diagnostics: (a) marginal CDFs (dN/mm2), (b) 

ADR by quantile, and (c) ADR against marginals and an ADR of unity 

(dashed). 

Marginal Distributions 

Total Load Effect Static Load Effect 

µ σ ξ µ σ ξ

87.36 0.102 0.2435 84.08 0.268 0.1668 

Dependence Measures 

BEV dependence parameter  Tail dependence 

0.5522α = 0.5346Uλ =

Table 8.3: Parameters of 1000-year lifetime fitted BEVD distribution. 

(a) (b)

(c)
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8.4 Summary 

In this chapter, the current means of allowing for dynamic interaction of bridge 

and truck(s) is reviewed and shown to be conservative. Simulations of static 

load effect are used to obtain monthly maximum loading events, which are then 

modelled dynamically to obtain the total load effect: that which results from the 

dynamic interaction of the bridge and trucks. It is shown that there is 

significant statistical correlation between the two variables, and dependence 

models are described that allow for this. 

Bivariate extreme value analysis is used to model the monthly maximum total 

and static load effects, and allow for their inter-dependence. Parametric 

bootstrapping is used to generate a history of lifetimes from the fitted bivariate 

distribution. In this manner, a distribution of bridge lifetime dynamic load ratio 

is derived. It is again shown to be bivariate, with a similar dependence structure 

to the monthly maximum events, even though the variables are no longer 

related through a single event. An alternative method to the univariate 

structure variable approach is also given and used to derive the assessment 

dynamic ratio for a given quantile. 

It is shown that the dynamic allowance reduces with increasing load effect and 

that, for the bridge and traffic studied, the design dynamic allowance required is 

5.8% of the static load effect. It is also shown that this allowance decreases 

slowly with increasing lifetime and that the lifetime at which 0% dynamics is 

attributable is around 2.7×106 years. Whilst the dynamic allowance results 

presented here are specific to this bridge and traffic, the method presented is 

general. 
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Chapter 9 - CONCLUSIONS 

9.1 Introduction 

The research undertaken and summarized in this dissertation is intended to 

further knowledge in aspects of the probabilistic analysis of highway bridge 

traffic loading. The need for more accurate forms of such analyses is outlined in 

the Introduction to this work. Indeed, significant savings may result in bridge 

management budgets as a result of reduction in bridge rehabilitation and 

replacement needs. When considered on a national (Irish), or international 

(European Union) level, the accumulation of such reductions in expenditure can 

have significant socio-political impact. It is hoped that this work contributes to 

this goal.- 

The objectives of this research are summarized here as: 

1. to maximize the use of measured traffic; 

2. to improve the statistical analyses for lifetime load effect; 

3. to remove inaccuracies in the lifetime load effect estimate. 

The developments in headway modelling (Chapter 5) and progress in traffic 

simulation (Chapter 4) contribute to the first objective. The method of 

composite distribution statistics (Chapter 6) and the bivariate extreme value 

analysis (Chapter 8) contribute to the second objective. The predictive 

likelihood analysis (Chapter 7) and aspects of the bivariate extreme value 

analysis (Chapter 8) both contribute to the final objective. 
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9.2 Executive Summary 

Purpose of the research 

• There is an increasing need for the rehabilitation/replacement of bridges due 

to deterioration and increased loading; 

• The strength assessment of bridges is relatively well understood compared to 

that of loading; 

• Better assessment of loading can result in significant maintenance budget 

savings internationally. 

Main aims 

To further knowledge in the following aspects of the probabilistic analysis of 

highway bridge traffic loading: 

1. maximize the use of measured traffic, which is difficult and expensive to 

obtain; 

2. improve the statistical analyses for lifetime load effect to better reflect 

the underlying phenomenon; 

3. remove inaccuracies in the lifetime load effect estimate, taking into 

account sources of variability. 

Methodology 

1. Measured traffic characteristics at a site were used to develop a traffic 

model for that site; 

2. The bridge traffic load model was used to determine the load effects 

resulting; 

3. Statistical analyses were carried out on the load effects to determine the 

lifetime characteristic load effect. 
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Main findings 

1. Existing headway models are overly simplistic and a new headway model 

(HeDS) was developed which is suitable for bridge traffic load modelling. 

2. Current statistical analyses are overly subjective and may not adhere to 

the iid requirements of the extreme value approach. A revised 

methodology was developed which accounts for the requirements of 

extreme value theory and uses Composite Distribution Statistics (CDS). 

3. Existing prediction methods do not account for variability of the 

prediction. Predictive likelihood was used and extended to include CDS 

analysis. It results in good estimation of the prediction variability by 

removing many sources of variability. 

4. Current dynamic allowances are derived from the worst dynamic loading, 

and applied to the worst static loading; this does not account for the 

joint probability of occurrence. Multivariate extreme value statistics was 

used to find the relationship between static and total load effect and was 

used to derive an appropriate level of Assessment Dynamic Ratio. It was 

found that the influence of dynamic interaction decreases with increasing 

static load effect, and on one site, ~6% dynamic allowance is required. 

Implications 

1. The means of modelling traffic characteristics has a significant effect 

upon the resultant characteristic load effect. 

2. Predictive likelihood and CDS should be used to evaluate a distribution 

of 100-year load effect from which design values may be obtained. 

3. If the required dynamic allowance is ~6%, free-flowing traffic is not the 

governing case for short-to-medium length bridges. Traffic jam models 

must then be used instead for these bridge lengths.  
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9.3 Review of Main Findings 

9.3.1 Simulation  

In the early years of this work, the majority of effort was expended on the 

generation and simulation of bridge traffic loading. The software developed by 

Grave (2001) was re-written with many small improvements. Of significance 

though, was the improvement in memory management which made possible a 

vastly increased period of simulation. It was a consistent theme though this 

work that an increase in the quantity of data reduces the variability of any 

statistical analysis. Consequently, the software tools developed enabled the 

advances made in this work. 

9.3.2 Headway modelling 

Various forms of headway model exist in the literature and it was shown that 

an assumption relating to a minimum gap is a common feature. The effect of 

this assumption was tested and load effects were shown to be sensitive to it. 

Whilst actual traffic is a complex process, a minimum gap does not exist; 

rather, a representation based directly on measured traffic is appropriate and 

avoids the need for assumption. 

Headway distribution statistics (HeDS) were derived that meet the requirements 

just outlined. The method involves the identification of headway distributions 

from measured flows that correspond to the hourly flows in the traffic load 

model. The headway behaviour of vehicles in these measured flows was used as 

a basis for the model. In recognition of the lack of justification for any 

particular distribution function, quadratic fits were made to individual 

measured headway distributions. A lack of correlation of headway with flow, for 

headways under 1.5 s, enables a more general model for small headways to be 
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used; one that is independent of flow. Headways above this figure were modelled 

with reducing fidelity as headway increases, dependent on flow. 

The application of the HeDS method was compared with several forms of 

minimum gap assumptions that may be made. Of note in the findings was the 

effect of influence line shape upon the results: load effects in which critical 

distances between loads are similar to the minimum gap were found to be 

underestimated relative to the HeDS model. This phenomenon was explained 

through the physical process of traffic loading events. 

Whilst the HeDS model is detailed and models measured traffic well, it is 

involved to derive the parameters for a particular site. This makes it impractical 

for general application, for without substantial site measurements – to an 

accuracy of 0.01 seconds – and appropriate software tools, it is too highly fitted 

to a particular site for use on another. However, these are quantitative concerns: 

the methodology developed was shown to accurately represent the measured 

traffic and results in loading events that do not violate the physical limitations 

of the traffic process. Therefore, for the purpose for which it is intended, that of 

site-specific traffic load modelling, the HeDS model is considered as the most 

representative headway model to date. 

9.3.3 Composite distribution statistics 

It was demonstrated that the distribution of daily maximum traffic load effects, 

upon which extreme value statistics are performed, is a composite, or mixed, 

distribution. Standard extreme value theory requires samples that are 

independent and identically distributed. It was shown that load effects resulting 

from different compositions of loading event (be they 1-, 2-, 3- or 4-truck events, 

for example) are distributed differently. Whilst it was shown that such loading 
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events are independent, it was also shown that it is not reasonable to treat 

them as identical. A method termed Composite Distribution Statistics (CDS) 

was developed which accounts for the different parent distributions of load 

effect, and combines them to determine the characteristic load effect. 

Theoretical examples, for which the distributions of lifetime ‘load effect’ are 

known were used to verify the CDS approach against a hybrid conventional 

approach, adapted from the literature. It was shown for several examples that 

the CDS method corresponds to the exact distribution far more closely than the 

hybrid conventional approach. That it is not exact, is a function of sampling 

variability, as parametric bootstrapping is used. 

In application to the bridge loading problem, the CDS results, in comparison 

with those of the conventional approach, were found to depend on the bridge 

length and influence line. The greatest observed difference was for bending 

moment at the central support of a two span bridge of overall length 40 m. 

The CDS method is relatively easy to apply, although it requires more data to 

be used. It was shown to identify mechanisms which do not contribute to block-

maximum load effects in the measurement period, but which govern the lifetime 

load effect. It is for this reason that use of the CDS method has shown that the 

conventional approach can miss the event-type that actually governs the 

extreme load effect for the lifetime of interest. 

9.3.4 Predictive likelihood 

The theory of predictive likelihood has emerged recently as a means to assess 

the relative likelihood of different outcomes given the data. There are few 

references to its application outside the statistical literature. The theory was 

presented in this work and extended to allow for the CDS method. Initially, the 
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standard form of predictive likelihood was applied and compared to published 

data and results. In this manner the behaviour of the method was examined. 

A composite distribution statistics form of predictive likelihood was applied to 

theoretical examples for which the exact distribution of lifetime load effect is 

known. In one case, the predictive distribution corresponded very well to the 

exact distribution; in general this was not the case. The results of a predictive 

likelihood analysis were shown to be dependent on the quality of the data’s 

resultant representation of the underlying (stipulated) distributions. Of 

significance however, was that in each case, predictive likelihood estimated the 

design load effect either conservatively or similar to the exact value. 

The form of predictive likelihood outlined in the preceding paragraph was 

applied to the results of 4-years of simulated traffic loading on several bridge 

lengths for several load effects. These results were generally found to exceed 

those of the traditional return period extrapolation approach. This is as 

expected as predictive likelihood accounts for parameter variability. This finding 

has implications for lifetime load effect assessment: it is preferable to estimate 

the 100-year distribution of lifetime load effect and use its 90-percentile value, 

rather than the traditional form of extrapolation to a 1000-year return period. 

As the results differ, and as predictive likelihood accounts for more variability, 

it is to be preferred. 

9.3.5 Bivariate extreme value analysis 

The dynamic allowance applied to extreme load effect is known to be 

conservative: it is improbable that a loading event with extreme dynamic 

interaction corresponds to an extreme static loading event. A procedure was 

developed which accounts for these relative probabilities, and was applied to a 
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notional site to determine the optimum value and form of dynamic allowance 

for lifetime load effect. Bivariate extreme value theory, in combination with 

parametric bootstrapping, was used for this purpose. 

Based on 10 years of simulated monthly-maximum (static) load events, total 

(static and dynamic components) load effect data, derived using finite element 

modelling of bridge-truck(s) interaction, was obtained. It was shown that 

significant correlation exists between total and static load effect and subsequent 

extrapolation had to account for this. Copula-based bivariate extreme value 

distributions were shown to represent the data well. Based on this distribution, 

a parametric bootstrapping approach was used to estimate sets of lifetime 

maximum static and total load effect. 

At a level of lifetime maximum total and static load effect, it was shown that 

dependence still existed between the two types of load effect – in spite of the 

data points not originating from the same loading events. The standard 

univariate structure variable method was shown to be unsuitable because of the 

nature of the problem, and an alternative approach was developed to establish 

an appropriate lifetime dynamic allowance. This approach integrates total and 

static load effects into a multivariate extreme value theory model that allows 

joint extrapolation. There is no comparable approach in the literature reviewed. 

The 90-percentile allowance derived from a 100-year bivariate lifetime load 

effect distribution was shown for a specific site to be 5.8%. Further, it was 

shown that the influence of dynamic interaction upon extreme loading events 

diminishes with increasing lifetime. These findings, if found to be general, have 

significant implications for the modelling and assessment of existing bridges. 
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9.4 Overview and Further Research 

9.4.1 Overview 

It is fair to say that, given the literature examined for this work, statistical 

analysis of the bridge loading problem is far behind that of other areas such as 

wind speed and flood prediction analysis. This is in spite of the potential 

significance of its application, alluded to in Section 9.1. 

The implications of the results in this work are elaborated. Firstly, more 

accurate means of modelling traffic characteristics clearly affects the resultant 

load effect. It is therefore a requirement to derive optimum modelling strategies. 

Secondly, predictive likelihood and the CDS method should be used to evaluate 

a distribution of 100-year load effect and appropriate percentiles extracted for 

design rules. Such a form of analysis means that event-types that do not feature 

in the simulation period may yet contribute to the lifetime load effect, and 

parametric variability is allowed for in the resultant distribution. Thirdly, and 

possibly most importantly, if it is verified that dynamic allowances can be as 

low as 6% at the lifetime load effect level, free-flowing traffic can no longer be 

considered as the governing case for short-to-medium length bridges. Traffic jam 

scenarios would then need to be studied extensively in the context of these 

bridge lengths, and research into the dynamics of bridge-truck interaction for 

such bridges would be affected. 

9.4.2 Further research 

Throughout this work, many appealing avenues for further research opened, yet 

remained unexplored. It is fervently hoped that these opportunities will not be 

lost, and that they may bear rewards for the interested. 
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Traffic Simulation 

In this topic, several areas for further research are: 

• Traffic characteristics modelling: the distributions of traffic 

characteristics used in the models, most notably that of GVW, have a 

significant effect on the resulting loads. The use of the normal 

distribution is widespread, yet has no justification: not least that it 

assigns probabilities to negative numbers. More accurate modelling of tail 

distributions is also important: weighted likelihood may prove useful. 

• Headway modelling: a generalized form of the HeDS method developed 

would be beneficial for application to numerous sites simultaneously. 

This is reasonable as driver behaviour is mostly location-independent. 

• Correlation of trucks: it is essential that a means to model measured 

correlation between trucks is established both for bi- and uni-directional 

bridges. As the number of lanes modelled increases this becomes more 

important. A form of Markov-Chain modelling using measured transition 

matrices could be appropriate. 

• Traffic jam analysis: To allow for the occurrence of traffic jams, and 

include the resultant load effects, is essential – especially so, given the 

result of Chapter 8. The CDS method is easily extended to allow for this. 

• Multiple-lane bridges: to generalize the developments made in this work, 

it is necessary to extend the two-lane bridge models described here to 

multi-lane bridge models. 

• Simulation strategy: the simulations of traffic loading have maximized 

the possibilities of 32-bit computer architecture. Approaches such as 64-
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bit programming, parallel-processing or continuous simulation are needed 

to investigate the extreme loading events further. Importance sampling, 

and the approach of Castillo et al (1997) are other possibilities, but full-

scale simulation of bridge loading is nonetheless required. 

Statistical Analysis 

In this topic, several areas for further research are: 

• Peaks-Over-Threshold (POT) analysis: there is an enormous wastage of 

data from the block maxima approach. This can be minimized through 

the use of POT analysis. A CDS implementation of this form of theory is 

yet to be done, though straightforward. It is envisaged that this form of 

analysis will have less variability in the extreme. 

• Bootstrapping: predictive likelihood is but one approach to the 

estimation of the variability of the extreme. Bootstrapping is very 

versatile; both the parametric and non-parametric forms could be used 

for this purpose. 

• Penalized likelihood for parameter evaluation: the extrapolation results 

are sensitive to the shape parameter estimate, which generally has wider 

confidence intervals than the other GEV parameters. A form of penalized 

likelihood inference could be used to reduce the accuracy of the scale and 

location parameters, increasing that of the shape parameter accordingly. 

General 

There are also some general areas for further investigation: 

• Dynamics of extreme events: though statistically derived, it is necessary 

to verify that extreme lifetime loading events exhibit little dynamics. 
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Further, it would be beneficial to have a loading history that allows for 

dynamic interaction, possibly through calibrated simplified two-

dimensional models. 

• Assessment procedures: from the research presented here, it is clear that 

its application to actual bridge assessment will not take place without 

effort. Thus it is necessary to derive assessment procedures based on this, 

and other work for implementation in practice. 

The areas for potential research outlined are not exhaustive by any measure and 

others are sure to open as this work is built upon. 
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Appendix A - PROGRAM DESCRIPTIONS 

A.1 Introduction 

This appendix describes the function and use of the three main programs 

developed as part of this research. Two of the programs, GenerateTraffic 

and SimulTraffic are based on programs of the same name by Grave (2001) 

written in FORTRAN. The programs are all object-orientated and were written in 

the C++ language, as described in Chapter 4. 

In summary, the function of the three main programs is: 

1. GenerateTraffic: Uses Monte-Carlo simulation to generate a traffic-

file whose statistical distributions match the input distributions; 

2. SimulTraffic: Simulates the effect of the traffic-file crossing the bridge 

and produces, for each effect, a block maximum value; 

3. AnalyseEvents: Filters the output from SimulTraffic and returns 

the extrapolated value for a range of return periods. 

In using these three programs, with the exception of the Traffic Data Input 

Files, all files must be located in the same folder as the three *.exe files. All 

output files will also be written into this folder. 

The algorithms used by these programs are explained in general terms 

throughout the text, but especially Chapters 4 and 5. Grave (2001) should be 

referred to for further information. 
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A.2 GenerateTraffic 

A.2.1 Input 

The input for this program is in two parts; first, the user specified information, 

that is, the customisation of the output to the users needs. Second, the 

statistical parameters of the truck traffic for the site under consideration. This 

input is considerably more complex to prepare than that of the user 

information. Both are described next. 

User Information Input File 

The user information input file is called GTin.txt; its format is as follows: 

Line Entry 
1
2
3
4
5
6

10 
50 
2
2
1
0

Line 1: This is the number of days for which traffic is required; on a 

Pentium 4 ® processor with 1 GB of RAM, up to about 1250 days 

(5 years) of traffic can be generated. 

Line 2: This specifies the maximum span for which the traffic file is to be 

used. This value is used in checking headways for headway models 

other than HeDS – refer to Chapter 5 for more information. 

Line 3: The index of the site giving the weight parameters – Table A.1. 

Line 4: The index of the site giving the flow rate data – Table A.1. 



APPENDIX A – PROGRAM DESCRIPTIONS 

323

Line 5: Boolean variable for the traffic to be generated: 1 for bidirectional, 

0 for uni-directional. In this work, proper correlation has not been 

included for uni-directional traffic; refer to Chapter 4. 

Line 6: Headway model to be used, see Table A.1. 

Site Indices Headway Models 

Index Site Index Model Type 
1

2

3

4

5

6

7

8

9

10 

11 

12 

13 

Angers 

Auxerre 

A196 

B224 

A296 

SAMARIS D1 

SAMARIS D2 

SAMARIS D3 

SAMARIS S1 

SAMARIS S2 

SAMARIS S3 

SAMARIS D 

SAMARIS S 

0

1

2

3

4

HeDS 

5 m

10 m 

0.5 s 

1.0 s  

Note:  

1. SAMARIS sites: D – Dutch, S – Slovenian, sites 12 and 13 are notional sites, 

composite of the three same-country sites. 

2. Headway models 1 to 4 are MGC models – refer to Chapter 5. 

Table A.1: Input indices for site and headway models. 

Traffic Data Input Files 

This input consists of several files which need to be located in a folder, named 

after the site which is located in the C:\Traffic\ folder. The site is then 

given an index number which is hard coded in the program for future use. The 

files then placed in this folder are of type comma separated values (*.csv). 

These file types are easily created in a spreadsheet program. 
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Axle Spacing 

File name: Asall.csv 

This file stores the axle spacing data for all classes of trucks measured at the 

site. The values must be separated by commas, and importantly, the last value 

must have a comma after it. An example is: 

1,50.7,3.7,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0, 
 
0.65,34.1,6.9,1,11.5,1.7,0,0,0,0,0,0, 
0.268,34,1.5,0,0,0,0,0,0,0,0,0, 
0.082,61.5,6,0,0,0,0,0,0,0,0,0, 
 
0.672,30.6,1.5,0.153,34.7,3,0.317,11.8,0.6,0,0,0, 
0.328,30.2,3.9,0.386,54.8,8.6,0.598,12.1,1.7,0,0,0, 
0,0,0,0.461,59.5,3.4,0.085,18.3,0.9,0,0,0, 
 
0.041,23.2,1.4,0.133,42,5.6,1,10.9,1.7,1,11,1.7, 
0.959,30.4,1.8,0.867,51.2,3.4,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0, 

This data is more easily understood viewed in tabular form, Table A.2. 

Spacing 1-2 Spacing 2-3 Spacing 3-4 Spacing 4-5
Class Line 

ρ µ σ ρ µ σ ρ µ σ ρ µ σ
1 1 50.7 3.7 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0

2-
A

xl
e

3 0 0 0 0 0 0 0 0 0 0 0 0

4
5 0.65 34.1 6.9 1 11.5 1.7 0 0 0 0 0 0 

6 0.268 34 1.5 0 0 0 0 0 0 0 0 0 

3-
A

xl
e

7 0.082 61.5 6 0 0 0 0 0 0 0 0 0 

8
9 0.672 30.6 1.5 0.153 34.7 3 0.317 11.8 0.6 0 0 0 

10 0.328 30.2 3.9 0.386 54.8 8.6 0.598 12.1 1.7 0 0 0 

4-
A

xl
e

11 0 0 0 0.461 59.5 3.4 0.085 18.3 0.9 0 0 0 

12
13 0.041 23.2 1.4 0.133 42 5.6 1 10.9 1.7 1 11 1.7 

14 0.959 30.4 1.8 0.867 51.2 3.4 0 0 0 0 0 0 

5-
A

xl
e

15 0 0 0 0 0 0 0 0 0 0 0 0

Table A.2: Axle spacing input file description. 
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Traffic data may be fitted by a mix of a number of Normal distributions; that 

is, the data may be multi-modally normally distributed. There are three 

parameters required for each of the modes: the weight, ρ ; the mean, µ , and; 

the standard deviation, σ . The maximum number of modes allowed for is three; 

hence the 3×3 tabular format of the data. The units of the data are as per 

traffic file convention explained in the Output section. 

Axle Weights 

File name: Aw2&3.csv 

This file contains the axle weight information for the 2- and 3- axle trucks of 

the site. The values must be separated by commas, and importantly, the last 

value must have a comma after it. An example is given, and explained in Table 

A.3: 

0.560,33.4,3.7,0.440,59.4,7.4,0.000,0.0,0.0, 
0.440,40.6,7.4,0.560,66.6,3.7,0.000,0.0,0.0, 
0.000,0.0,0.0,0.000,0.0,0.0,0.000,0.0,0.0, 
 
0.066,20.4,1.5,0.769,34.6,6.8,0.558,30.5,5.9, 
0.522,26.0,4.9,0.227,39.2,2.2,0.442,37.7,3.5, 
0.412,38.7,8.6,0.004,54.4,3.7,0.000,0.0,0.0, 

 

Weight Axle 1 Weight Axle 2 Weight Axle 3
Class Row 

ρ µ σ ρ µ σ ρ µ σ
1 0.56 33.4 3.7 0.44 59.4 7.4 0 0 0 

2 0.44 40.6 7.4 0.56 66.6 3.7 0 0 0 

2-
A

xl
e

3 0 0 0 0 0 0 0 0 0

4

5 0.066 20.4 1.5 0.769 34.6 6.8 0.558 30.5 5.9 

6 0.522 26 4.9 0.227 39.2 2.2 0.442 37.7 3.5 

3-
A

xl
e

7 0.412 38.7 8.6 0.004 54.4 3.7 0 0 0 

Table A.3: Axle weight for 2- and 3-axle trucks input file description. 
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File name: Aw4&5.csv 

This file contains the axle weight information for the 4- and 5-axle trucks. It has 

been found that the axle weights of the 4- and 5-axle trucks depend on the 

Gross Vehicle Weight (GVW). Thus the data governing these axle weights have 

been assembled for 12 classes of truck GVW, beginning at 25 kN and increasing 

in steps of 50 kN. An example of the data file is given: 

0.0,0.0,0.0,0.0,0.0,0.0, 
20.9,39.8,39.3,5.2,6.9,7.3, 
25.6,36.5,38.0,5.4,4.8,5.7, 
23.9,35.5,40.7,4.3,4.6,5.2, 
20.3,36.1,43.6,3.6,4.6,5.4, 
17.4,34.9,47.7,3.0,4.1,5.5, 
14.8,33.4,51.8,2.1,3.1,4.1, 
14.5,33.6,51.9,1.5,2.6,3.2, 
13.9,32.4,53.7,1.3,2.3,3.1, 
11.9,31.4,56.7,0.9,1.4,0.9, 
0.0,0.0,0.0,0.0,0.0,0.0, 
0.0,0.0,0.0,0.0,0.0,0.0, 
 
0.0,0.0,0.0,0.0,0.0,0.0, 
0.0,0.0,0.0,0.0,0.0,0.0, 
19.1,36.5,44.5,6.0,7.4,7.2, 
23.6,32.8,43.7,4.6,4.2,5.0, 
21.4,33.4,45.3,3.2,4.8,5.4, 
18.1,33.8,48.1,2.4,4.5,5.5, 
15.7,32.3,52.0,1.8,3.8,4.7, 
14.3,31.0,54.6,1.5,3.3,3.9, 
13.4,29.6,57.1,1.2,2.9,3.4, 
12.7,27.7,59.6,1.0,2.7,3.1, 
0.0,0.0,0.0,0.0,0.0,0.0, 
0.0,0.0,0.0,0.0,0.0,0.0, 

The values must be separated by commas, and the last value must have a 

comma after it. A single line separates the 4- and 5-axle data. The six entries 

for each line, or GVW range of truck, represent the parameters of the single-

mode Normal distributions for the first (W1) and second (W2) axles and the 

total weight of the tandem or tridem (WT) in the order shown in Table A.4. 

Mean W1 Mean W2 Mean WT SD W1 SD W2 SD WT 

Table A.4: Axle weight for 4- and 5-axle trucks input file description. 
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This has resulted from previous research which has found that the weights of 

the axles in the tandem or tridem of 4- and 5-axle trucks (respectively) are 

equal and thus the tandem/tridem may be considered as one weight. The 

calculated tandem/tridem weight will be divided by the number of axles to give 

each axle a weight in the processing of this data. 

Traffic composition and flow 

File name: Class%.csv 

This file holds the data for the percentage of trucks in each class and for each 

direction. The values must be separated by commas, and the last value must 

have a comma after it. An example is given and explained in Table A.5: 

27.2,30.1, 
4.5,6.0, 
37.2,37.4, 
31.1,26.5, 

 

Class Direction 1 Direction 2 

2-Axle 27.2 30.1 

3-Axle 4.5 6 

4-Axle 37.2 37.4 

5-Axle 31.1 26.5 

Table A.5: Traffic composition input file explanation. 

File name: FlowR.csv 

This file holds the average number of trucks, for the hour under consideration, 

for both directions, for each hour of a typical working day. The values must be 

separated by commas, and importantly, the last value must have a comma after 
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it. Column 1 holds the 24 hourly flow rates for direction 1 and similarly for 

direction 2. An example is 

25.4,41.0, 
16.4,35.8, 
14.4,40.2, 
17.2,33.0, 
24.8,44.6, 
42.0,56.4, 
58.0,86.4, 
68.8,103.2, 
78.8,106.2, 
90.6,111.8, 
97.2,109.4, 
96.0,99.8, 
65.2,59.8, 
56.4,74.6, 
85.4,83.2, 
84.6,74.6, 
92.8,93.8, 
89.4,91.8, 
100.8,69.6, 
91.6,57.8, 
73.0,45.0, 
76.4,44.2, 
63.0,53.8, 
37.6,47.8, 
 

Gross Vehicle Weight 

File name: GVWpdf.csv 

This file holds the parameters of the distributions that characterize the GVW 

and speed of each class of truck for both directions. An example of this file is: 

1,194.5,27.4,0.152,44.2,6.5,0.069,51.2,9.7,0.583,231.1,61.9,0.274,199.9,36.7, 
0,0,0,0.395,76.4,20.7,0.887,166.3,53.2,0.24,176.6,29.6,0.553,308.7,49.9, 
0,0,0,0.453,117.4,30.5,0.044,268.4,34.7,0.177,331,30.1,0.173,383.2,35.4, 
 
1,181.1,22.4,0.143,46.5,8,0.093,56.4,12.4,0.493,243.6,64.6,0.16,205.3,40.1, 
0,0,0,0.524,82.9,23.8,0.653,141.5,31.1,0.301,162.1,28.8,0.441,300.6,53.6, 
0,0,0,0.333,132.3,31.8,0.254,218.5,33.4,0.206,361.9,31.6,0.399,400.4,35.9, 

Again this is best explained by reference to Table A.6. In this table the entry 

3×3 refers to the allowance for multi-modal distributions (up to a maximum of 

three modes) and includes, for each mode, the weight, mean and standard 

deviation, as explained for the Asall.csv file. The values must be separated 

by commas, and importantly, the last value must have a comma after it. 
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Speed 
2-Axle 

GVW 

3-Axle 

GVW 

4-Axle 

GVW 

5-Axle 

GVW 

Direction 1 3×3 3×3 3×3 3×3 3×3 

Blank Line 

Direction 2 3×3 3×3 3×3 3×3 3×3 

Table A.6: GVW input file explanation. 

Headway 

File name: HeDS.csv 

Only the HeDS headway model requires an input file. An example is: 

15,0,0,0, 
0,0.011855673,-0.014268241,0.004048786, 
0,0.039251526,-0.05978246,0.02212043, 
70,-0.004412997,0.054824101,-0.066907905, 
80,-0.004685721,0.052127816,-0.053475193, 
90,0.001537014,0.020896587,-0.013787689, 
100,-0.003853623,0.064555837,-0.069172155, 
110,-0.002530238,0.054511802,-0.059714977, 
120,-0.001307981,0.048010242,-0.051645258, 
130,-0.000487752,0.049738587,-0.057875119, 
140,-0.004995115,0.081041256,-0.086465967, 
150,-0.004547469,0.080310658,-0.083351351, 
160,-0.004938412,0.092219287,-0.105416601, 
170,-0.005000644,0.086893379,-0.097048852, 
180,0.001987438,0.052114614,-0.058245039, 
190,0.003366332,0.044909211,-0.063187142, 
210,0.000379907,0.068461437,-0.077769612, 
230,-0.006466786,0.117770005,-0.141174818, 

Line 1 indicates the number of flow-dependent headway models (always less 

than, or equal to, 24). Lines 2 and 3 give the parameters of the quadratic-fit 

headway CDF for under 1.0 s and between 1.0 s and 1.5 s respectively. The 

following lines (15 in this example, from Line 1), return the parameters of the 

quadratic fit to the headway CDF for that flow (trucks per hour) of the first 

column. Refer to Chapter 5 for further information. The values must be 

separated by commas, and importantly, the last value must have a comma after 

it.
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A.2.2 Output 

The trucks are output in the traffic file specified in GTin.txt input file. The 

format of the output follows the convention adopted by CASTOR-LCPC and 

other users – Table A.7. 

Characteristic Unit Format
Head I4
Day I2
Month I2
Year I2
Hour I2
Minute I2
Second I2
Second/100 I2
Speed dm/s I3
Gross Vehicle Weight - GVW kg/100 I4
Length dm I3
No. Axles I1
Direction I1
Lane I1
Transverse Location In Lane dm I3
Weight Axle 1 kg/100 I3
Spacing Axle 1 - Axle 2 dm I2
Weight Axle 2 kg/100 I3
Spacing Axle 2 - Axle 3 dm I2
“ “ “
Spacing Axle 8 - Axle 9 dm I2
Weight Axle 9 kg/100 I3
Note: the format entries refer to IX, as an integer of length X.

Table A.7: Traffic-file structure. 

An example of the program output for several trucks is: 

1001 1 1 2 0 12618155  54 43211 18 2743 27 0  0 0  0 0  0 0  0 0  0 0  0 0  0 
1001 1 1 2 0 2 412133 137 67311 18 5441 6626 17 0  0 0  0 0  0 0  0 0  0 0  0 
1001 1 1 2 0 2 598157  64 43211 18 3243 32 0  0 0  0 0  0 0  0 0  0 0  0 0  0 
1001 1 1 2 0 44354134 336133511 18 7839 7040 6327 6327 63 0  0 0  0 0  0 0  0 
1001 1 1 2 0 93062152 117 67311 18 3941 3926 39 0  0 0  0 0  0 0  0 0  0 0  0 
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A.3 SimulTraffic 

A.3.1 User input file 

The input file is called STin.txt; its format is as follows: 

Line Entry 
1
2
3
4
5

WbQb.txt 
4
20,30,40,50, 
2
400 

Line 1: This specifies the name of the traffic file to be read in. 

Line 2: This specifies the number of bridge lengths over which the traffic 

file will be passed. The number supplied here must match the 

number of values supplied in Line 3. 

Line 3: The different bridge lengths to be examined are specified here. As 

can be seen in the example decimal points can be used as can 

integer lengths. The values must be separated by commas, and 

importantly, the last value must have a comma after it.

Line 4: This specifies the number of directions in the traffic file (1 or 2). 

Line 5: The GVW limit for single truck events in deci-tonnes. Single truck 

events with GVW lower than this value will not be processed. 

Other options are currently hard-coded into the program. Input file definition of 

these options will be included in further implementations. These options are: 

• Output monthly maxima or daily maxima; 
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• Output the effect value from all events, used for estimating parent 

distributions of load effect; 

• Maximum number of event-types possible – currently set at 7-truck 

events, none of which have been found to occur in free-flowing traffic on 

short- to medium-length bridges. However, in future implementations 

traffic jam scenarios will be modelled and this option will become 

important, but it is easily increased. 

• Simulation calendar options: currently the number of days per ‘month’ is 

set at 25, and the number of ‘months’ per year set at 10. 

• Presently every effect is calculated, of which there are 15. As this is 

wasteful when some effects are not of interest, future implementations 

could allow the user to specify the effects of interest. 

A.3.2 Output 

File name: Span_X_Y_i.txt 

The output from SimulTraffic consists of a set of files for each span 

examined.  

In the filename, X represents the bridge length, Y the file-type, be it daily 

maximum (Y = “DM”), monthly maximum (Y = “MM”), or all events (Y =

“All”). The index i represents the event-type results in the file, for example, i =

2 for the 2-truck event results. 

For block maxima results (Y = “DM” or “MM”) the output file contains the 

events of type i identified, the trucks involved and the load effect values. An 

example of a single 3-truck daily maximum event for a 30 m bridge length 

follows: 
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Line Data 
1 1

2 1 0 0 0 0

3 2 1021.29        9917.74    -0.814   3 

4 1001 1 1 5 2451672273 396105511  0 623214250 6412 6412 64 0  0 0  0 0  0 0  00 

5 1001 1 1 5 2451750256 362109511  0 463012152 6514 6514 65 0  0 0  0 0  0 0  00 

6 1001 1 1 5 2451771217 479111522  0 563115056 9112 9112 91 0  0 0  0 0  0 0  00 

7 3 530.84        74249.7    35.916   3 

8 1001 1 1 520372825246 280112511  0 583410252 4013 4013 40 0  0 0  0 0  0 0  00 

9 1001 1 1 520372967245 368118411  0 503212667 9619 96 0  0 0  0 0  0 0  0 0  00 

10 1001 1 1 520373065208 504104422  0 60301666113913139 0  0 0  0 0  0 0  0 0  00 

11  4   637.684        9917.62      1.79   3 

12 1001 1 1 5 2451672273 396105511  0 623214250 6412 6412 64 0  0 0  0 0  0 0  00 

13 1001 1 1 5 2451750256 362109511  0 463012152 6514 6514 65 0  0 0  0 0  0 0  00 

14 1001 1 1 5 2451771217 479111522  0 563115056 9112 9112 91 0  0 0  0 0  0 0  00 

15  5    414.73        74249.7    35.916   3 

16 1001 1 1 520372825246 280112511  0 583410252 4013 4013 40 0  0 0  0 0  0 0  00 

17 1001 1 1 520372967245 368118411  0 503212667 9619 96 0  0 0  0 0  0 0  0 0  00 

18 1001 1 1 520373065208 504104422  0 60301666113913139 0  0 0  0 0  0 0  0 0  00 

19  6   379.172        9917.84    -2.984   3 

20 1001 1 1 5 2451672273 396105511  0 623214250 6412 6412 64 0  0 0  0 0  0 0  00 

21 1001 1 1 5 2451750256 362109511  0 463012152 6514 6514 65 0  0 0  0 0  0 0  00 

22 1001 1 1 5 2451771217 479111522  0 563115056 9112 9112 91 0  0 0  0 0  0 0  00 

23  7         0              0         0   0 

24  8         0              0         0   0 

25  9         0              0         0   0 

26 10         0              0         0   0 

27 11         0              0         0   0 

28 12         0              0         0   0 

29 13         0              0         0   0 

30 14         0              0         0   0 

31 15         0              0         0   0 

Line 1: The index of the block maximum: if it is a DM file it is the day 

number, and if it is an MM file it is the month number. These 

indices are cumulative through the simulation results, thus a four-

year simulation will have monthly maximum indices up to 40. 
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Lines 2-3: This is the effect information line. The format is: 

Load Effect ID Value Time Distance No. of trucks

The effect time, in seconds, is from the start of the first year of 

simulation. The distance is the position of the first axle of the first 

truck on the bridge relative to the bridge datum, at the time of 

the crossing event maximum effect being reached. In this file, no 

3-truck event is noted for Load Effect 1. Line 3 is similar. 

Line 4-6: These lines provide the full truck information from the traffic file 

for all the trucks involved in the event for later processing. 

Line 7+: The format of lines 2-6 continues for each of the effects calculated. 

For the case in which Y = “All” and all of the effect values are required, the file 

format is simpler: 

1-truck values 2-truck values 3-truck values etc 

An example output is: 

1313.7 2210.45 2763.5  
1365.06 1247.76 0  
… … …

The number of rows is equal to the maximum number of events noted for all of 

the event-types. In this example (from a 20 m bridge length) it can be seen that 

in the simulation period, only 1 3-truck event was recorded. 
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A.4 AnalyseEvents 

A.4.1 Input 

The input file is called AEin.txt; its format is as follows: 

Line Entry 
1
2
3

4
Span_20_DM, Span_30_DM, Span_40_DM,Span_50_DM, 
1,1,1,0,0,0,0,0,0,0,0,0,0,0,0, 

Line 1: This specifies the number of block maxima events files to be input. 

Line 2: This line specifies the ‘root names’ of the block maxima events 

files to be processed – the program automatically finds each of the 

event-type files associated with the root. The number of files must 

match the number of Line 1; the values must be separated by 

commas and the last value must have a comma after it. 

Line 3: This line identifies the Load Effect output required: 1 if it is 

required and 0 if it is not. The index of the digit corresponds to 

the Load Effect ID. Thus, the above example will provide output 

for Effects 1, 2, and 3. Once again, the values must be separated 

by commas and the last value must have a comma after it. 

A.4.2 Output 

There are three types of file output. The first is used for graphical examination 

of the statistical analysis. The second is used as input for the predictive 

likelihood program used in Chapter 7. Finally, the results of the extrapolations 

are output. 
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Analysis and Graphing File 

File name: Span_X_Y_G_i.txt

This file holds the results of the composite distribution analysis of Chapter 6 as 

well as Gumbel paper plotting information for each value. In the filename, X

and Y are as previously, “G” represents the graph file, and i is the load effect 

for which the analysis is run. The file format is complex, and an Excel ® 

spreadsheet is available to read and plot the results in files of this type. The 

structure is: 

1-truck event 2-truck event Etc. Conventional  

GEV 1×3 cell GEV 1×3 cell GEV 1×3 cell GEV 1×3 cell  

N1×3 N2×3 Nj×3 N×4 

The GEV 1×3 cells give the GEV parameter vector for that event-type (or the 

daily maximum load effect values if the Conventional fit). The corresponding 

Nj×3 results give the Nj effect values with the corresponding fit and empirical 

plotting positions (standard extremal variates). The N×4 matrix at the end 

returns the daily maximum load effect values along with the empirical, CDS, 

and Conventional plotting positions. 

Predictive Likelihood Input 

File name: Span_X_Y_PL_i.txt

This file is the input file for the predictive likelihood analysis. Its format is 

simple; for each day (row) it lists the daily maximum load effect value for each 

event-type (column) recorded. This is similar to the “All” SimulTraffic files. 
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Extrapolation Results 

File name: Span_X_Y_D_EV.txt

The extrapolated results for a range of return periods are included in this file. 

All effects are output into this file; its format is read by an Excel ® file and 

used to plot graphs. An example follows in which the first column is the load 

effect index; the second, the return period in years; the third, the CDS 

prediction; and the fourth, the Conventional prediction. It can be seen that the 

extrapolation breaks down after 2500 years due to a bounded result. 

1 1.0101 3750.68 3750.41 
1 1.02041 3751.71 3751.24 
1 1.04167 3753.43 3752.94 
1 1.06383 3755.17 3754.67 
1 1.08696 3756.95 3756.43 
1 1.11111 3758.76 3758.22 
1 1.25  3768.3 3767.75 
1 1.42857 3779.08 3778.39 
1 1.66667 3791.07 3790.46 
1 2 3805.29 3804.44 
1 2.5  3822.04 3821.13 
1 3.33333 3842.84 3841.99 
1 5 3871.31 3870.19 
1 10  3916.98 3915.28 
1 100  4048.43 4040.6 
1 200  4075.82 4071.98 
1 250  4084.9 4081.53 
1 333.333 4097.53 4093.47 
1 500  4114.44 4109.62 
1 1000  4142.45 4135.44 
1 1250  4149.19 4143.31 
1 2500  4176.32 4166.42 
1 25000  0 4230.68 
1 50000  7.11642e+024 4246.77 
1 62500  1.21256e+046 4251.67 
1 83333.3 -1.#INF 4257.79 
1 125000 -1.#INF 4266.07 
1 250000 -1.#INF 4279.32  
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“A thousand probabilities do not make one fact” 
 - John Thurloe 
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Appendix B - MAXIMA 

B.1 GEV Transforms 

Introduction 

Based on the stability postulate, a distribution of maximum values from a 

parent distribution that is of GEV form, is itself a GEV distribution (Chapter 3, 

Section 3.4.2). The distribution of maximum values, ( )YF ⋅ , from a parent 

distribution ( )XF ⋅ is given by: 

 [ ]( ) ( ) n
Y XF x F x= (B.1) 

The stability postulate requires of any extreme value distribution that a linear 

transform of the variable x gives: 

 ( ) ( )*; ;n
n nG x G a b xθ θ= +  (B.2) 

where the transformation parameters na and nb are reliant on n and the 

parameter vectors of the distributions are θ and *θ respectively.  In this work, 

it is of interest to find the new parameter vector *θ that result from the 

transform of (B.2). 

Determination of na and nb

The GEV distribution has three parameters: location, µ ; scale, σ , and; shape, 

ξ , and the equation of the GEV CDF is: 

 
1/

( ) exp 1 xG x
ξ

µξ
σ +

  −  = − −       
(B.3) 
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where max( ,0)x x+ = and the parameters satisfy ∞<<∞− µ , 0>σ and 

∞<<∞− ξ . Based on (B.3), and proceeding as follows: 

 ( ) ( )n
n nG a b x G x+ =  (B.4) 

 [ ]( ) ( )log ( ) log ( )n
n nG a b x G x

ξξ
 + =   (B.5) 

Introducing (B.3) gives: 

 
( )

1 n na b x xn nξ ξµ µξ ξ
σ σ

 + − − − = −   
  

 (B.6) 

Multiplying out and collecting terms gives: 

 1 n na b n nx n x
ξ ξ

ξξ ξµ ξµ ξ
σ σ σ σ σ

   −   − + + = − + −             
(B.7) 

Thus: 

 
1 n

n

a nn

b n

ξ
ξ

ξ

ξ ξµ ξµ
σ σ σ

ξ
σ σ

− + = −

−
= −

(B.8) 

and solving gives: 

 
( ) ( )1 1n

n

a n n

b n

ξ ξ

ξ

σ µ
ξ
ξ

= − + +

=
(B.9) 

The parameters na and nb are useful when it suffices to modify the input 

variable, x. However, often it is preferable to know the parameters, *θ , of the 

new distribution, ( ) ( )* *; ;nG x G xθ θ≡ and this result follows. 
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Determination of *θ

Based on (B.3) and (B.4), and using subscripts n for the individual parameters 

to show that they are considered as functions of n:

( )
1/ 1/

1 1
n

n n n
n

n

a b x x
ξ ξ

µ µξ ξ
σ σ

    + −  −   − − ≡ − −      
        

 (B.10) 

As (B.4) is a linear transform of the distribution, its shape will not alter. This 

feature has been noted in other work (Han 2003) also. Therefore, nξ ξ= and: 

 
( )

1 1n n n
n

n

a b x xµ µ
ξ ξ

σ σ
 + −  −

− = −   
  

 (B.11) 

However, from the previous derivation of na and nb , it is also known that: 

 
( )

1 1n na b x xnξ
µ µξ ξ

σ σ
 + −  − − = −       

 (B.12) 

and so, 

 1 1 n
n

n

xxnξ µµξ ξ
σ σ

   −− − = −        
(B.13) 

By expanding and collecting terms: 

 1 n n
n

n n

n nn x x
ξ ξ

ξ µ ξξµ ξ ξ
σ σ σ σ

      
+ + − = + +      

       
(B.14) 

and solving with nξ ξ= gives: 

 
11

n

n

n

n

ξ

ξ

σσ

σµ µ
ξ

=

 = − + 
 

 (B.15) 



APPENDIX B – MAXIMA 

342

B.2 Parent Distributions of Load Effect 

The results of the parent distribution study of Chapter 6, Section 6.2 are 

reported here. Six distributions are fitted to the load effect data resulting from 

the 20-year simulation study of the Auxerre traffic. The distributions fitted are: 

Frechet, GEV, Generalized Gamma, Gumbel, Normal, and Weibull – refer to 

Brodtkorb et al (2000) for further details on the distributions and the fitting 

algorithm. 

In the figures that follow – Figure B.2 to Figure B.52 – two subplots are given. 

The right hand plot gives a histogram of the data, binned according to Sturge’s 

Rule (Benjamin and Cornell 1970), along with the probability density functions 

of the fitted distributions. It is to be noted that maximum likelihood fitting is 

used, and the fits are not reliant on the number of bins in the histogram. The 

left hand plot shows the data and fitted distributions on Gumbel probability 

paper (Chapter 3, Section 3.2.3). 

The legend used in the plots is given by Figure B.1. 

Figure B.1: Legend of parent distribution figures. 

In Table B.1 to Table B.12, the maximum likelihood parameter estimates and 

likelihood function values are given for the corresponding figures. 
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Figure B.2: Parent distribution for Load Effect 1; Length 20 m; 1-truck event. 
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Figure B.3: Parent distribution for Load Effect 1; Length 20 m; 2-truck event. 
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Figure B.4: Parent distribution for Load Effect 1; Length 20 m; 3-truck event. 
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Figure B.5: Parent distribution for Load Effect 1; Length 20 m; 4-truck event. 
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Figure B.6: Parent distribution for Load Effect 1; Length 30 m; 1-truck event. 
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Figure B.7: Parent distribution for Load Effect 1; Length 30 m; 2-truck event. 
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Figure B.8: Parent distribution for Load Effect 1; Length 30 m; 3-truck event. 
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Figure B.9: Parent distribution for Load Effect 1; Length 30 m; 4-truck event. 
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Figure B.10: Parent distribution for Load Effect 1; Length 40 m; 1-truck event. 
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Figure B.11: Parent distribution for Load Effect 1; Length 40 m; 2-truck event. 
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Figure B.12: Parent distribution for Load Effect 1; Length 40 m; 3-truck event. 
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Figure B.13: Parent distribution for Load Effect 1; Length 40 m; 4-truck event. 
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Figure B.14: Parent distribution for Load Effect 1; Length 50 m; 1-truck event. 
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Figure B.15: Parent distribution for Load Effect 1; Length 50 m; 2-truck event. 
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Figure B.16: Parent distribution for Load Effect 1; Length 50 m; 3-truck event. 
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Figure B.17: Parent distribution for Load Effect 1; Length 50 m; 4-truck event. 
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Figure B.18: Parent distribution for Load Effect 1; Length 50 m; 5-truck event. 
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Load Effect 1 Bridge Length: 20 m
1-truck event

Rank Distribution Log-likelihood Parameter vector
1 GEV -323847.141 -0.019 132.263 1367.717 

2 Gumbel -323860.871 133.177 1369.073 0 

3 Frechet -324047.776 1362.45 10.526 0 

4 G.Gamma -326654.495 52.069 52.716 1.193 

5 Normal -328081.551 1447.053 29301.24 0 

6 Weibull -333932.985 1526.075 7.893 0 

2-truck event
Rank Distribution Log-likelihood Parameter vector

1 GEV -385335.694 0.216 520.381 1559.618 

2 G.Gamma -385445.184 1.665 1566.336 2.658 

3 Weibull -385631.057 1961.525 3.572 0 

4 Normal -385653.126 1767.051 293093.8 0 

5 Gumbel -387697.957 508.306 1501.27 0 

6 Frechet -400048.057 1408.774 2.476 0 

3-truck event
Rank Distribution Log-likelihood Parameter vector

1 G.Gamma -3096.768 2.849 1351.638 2.607 

2 Normal -3097.202 1936.845 205595.9 0 

3 GEV -3097.411 0.232 444.544 1766.556 

4 Weibull -3102.732 2114.646 4.634 0 

5 Gumbel -3121.817 438.704 1712.3 0 

6 Frechet -3187.918 1648.311 3.447 0 

Table B.1: Maximum likelihood estimates for Load Effect 1; Length 20 m. 
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Load Effect 1 Bridge Length: 30 m
1-truck event

Rank Distribution Log-likelihood Parameter vector
1 GEV -346881.545 -0.083 202.058 2442.359 

2 Frechet -346881.549 2442.396 12.086 0 

3 Gumbel -347099.567 209.337 2451.598 0 

4 G.Gamma -350825.662 66.34 72.411 1.174 

5 Normal -352290.826 2576.791 77169.2 0 

6 Weibull -358836.6 2707.09 8.507 0 

2-truck event
Rank Distribution Log-likelihood Parameter vector

1 GEV -413859.151 0.215 919.7 2708.019 

2 G.Gamma -414029.825 1.672 2708.792 2.598 

3 Normal -414208.382 3074.6 918464.1 0 

4 Weibull -414232.152 3415.927 3.496 0 

5 Gumbel -416226.575 901.181 2605.242 0 

6 Frechet -429924.1 2437.324 2.381 0 

3-truck event
Rank Distribution Log-likelihood Parameter vector

1 GEV -35776.032 0.232 841.859 3210.828 

2 G.Gamma -35783.746 2.583 2582.014 2.632 

3 Normal -35792.337 3536.071 747383.9 0 

4 Weibull -35829.671 3872.117 4.482 0 

5 Gumbel -36026.91 828.93 3109.515 0 

6 Frechet -36819.263 2991.096 3.288 0 

Table B.2: Maximum likelihood estimates for Load Effect 1; Length 30 m. 
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Load Effect 1 Bridge Length: 40 m
1-truck event

Rank Distribution Log-likelihood Parameter vector
1 GEV -363001.375 -0.112 274.398 3515.703 

2 Frechet -363030.241 3520.639 12.662 0 

3 Gumbel -363362.076 288.577 3532.809 0 

4 G.Gamma -367475.032 59.34 145.803 1.262 

5 Normal -368866.396 3706.613 149758.4 0 

6 Weibull -375640.745 3889.085 8.73 0 

2-truck event
Rank Distribution Log-likelihood Parameter vector

1 GEV -431223.95 0.21 1296.957 3816.512 

2 G.Gamma -431424.95 1.829 3622.188 2.454 

3 Normal -431614.018 4336.929 1842592 0 

4 Weibull -431714.037 4819.181 3.461 0 

5 Gumbel -433471.274 1273.204 3674.693 0 

6 Frechet -447398.819 3440.284 2.388 0 

3-truck event
Rank Distribution Log-likelihood Parameter vector

1 GEV -159468.648 0.243 1259.681 4733.953 

2 G.Gamma -159491.738 2.138 4233.303 2.907 

3 Normal -159505.807 5210.643 1643540 0 

4 Weibull -159631.17 5706.861 4.474 0 

5 Gumbel -160663.122 1245.428 4575.346 0 

6 Frechet -164329.456 4411.416 3.298 0 

4-truck event
Rank Distribution Log-likelihood Parameter vector

1 GEV -317.454 0.153 1192.759 5510.345 

2 G.Gamma -317.508 20.942 295.78 1.008 

3 Gumbel -317.928 1131.472 5414.258 0 

4 Normal -318.136 6049.425 1721393 0 

5 Weibull -318.968 6581.442 4.931 0 

6 Frechet -319.378 5294.196 4.906 0 

Table B.3: Maximum likelihood estimates for Load Effect 1; Length 40 m. 
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Load Effect 1 Bridge Length: 50 m
1-truck event

Rank Distribution Log-likelihood Parameter vector
1 GEV -375319.191 -0.126 348.303 4588.909 

2 Frechet -375378.98 4598.21 12.938 0 

3 Gumbel -375754.312 369.098 4613.477 0 

4 G.Gamma -380080.66 52.663 271.864 1.377 

5 Normal -381385.459 4836.421 247098 0 

6 Weibull -388263.633 5071.358 8.844 0 

2-truck event
Rank Distribution Log-likelihood Parameter vector

1 GEV -443622.176 0.201 1655.568 4890.481 

2 G.Gamma -443833.479 1.946 4471.025 2.369 

3 Normal -444018.782 5563.557 3026370 0 

4 Weibull -444198.834 6181.224 3.448 0 

5 Gumbel -445814.898 1631.988 4716.974 0 

6 Frechet -459889.633 4410.749 2.363 0 

3-truck event
Rank Distribution Log-likelihood Parameter vector

1 G.Gamma -439936.63 2.049 5718.775 2.936 

2 GEV -439957.173 0.235 1689.558 6258.307 

3 Normal -439964.06 6906.131 2965658 0 

4 Weibull -440282.917 7569.56 4.413 0 

5 Gumbel -443095.194 1675.072 6052.249 0 

6 Frechet -452945.748 5814.015 3.164 0 

4-truck event
Rank Distribution Log-likelihood Parameter vector

1 Normal -3227.292 7982.878 2802193 0 

2 G.Gamma -3227.595 2.167 6681.794 3.41 

3 GEV -3228.617 0.257 1676.817 7369.156 

4 Weibull -3230.704 8654.902 5.268 0 

5 Gumbel -3259.666 1698.502 7145.363 0 

6 Frechet -3320.757 6985.525 4.045 0 

Table B.4: Maximum likelihood estimates for Load Effect 1; Length 50 m. 
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Load Effect 2 
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Figure B.19: Parent distribution for Load Effect 2; Length 20 m; 1-truck event. 
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Figure B.20: Parent distribution for Load Effect 2; Length 20 m; 2-truck event. 
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Figure B.21: Parent distribution for Load Effect 2; Length 20 m; 3-truck event. 
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Figure B.22: Parent distribution for Load Effect 2; Length 20 m; 4-truck event. 
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Figure B.23: Parent distribution for Load Effect 2; Length 30 m; 1-truck event. 
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Figure B.24: Parent distribution for Load Effect 2; Length 30 m; 2-truck event. 
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Figure B.25: Parent distribution for Load Effect 2; Length 30 m; 3-truck event. 
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Figure B.26: Parent distribution for Load Effect 2; Length 30 m; 4-truck event. 
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Figure B.27: Parent distribution for Load Effect 2; Length 40 m; 1-truck event. 
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Figure B.28: Parent distribution for Load Effect 2; Length 40 m; 2-truck event. 
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Figure B.29: Parent distribution for Load Effect 2; Length 40 m; 3-truck event. 
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Figure B.30: Parent distribution for Load Effect 2; Length 40 m; 4-truck event. 
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Figure B.31: Parent distribution for Load Effect 2; Length 50 m; 1-truck event. 
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Figure B.32: Parent distribution for Load Effect 2; Length 50 m; 2-truck event. 
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Figure B.33: Parent distribution for Load Effect 2; Length 50 m; 3-truck event. 
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Figure B.34: Parent distribution for Load Effect 2; Length 50 m; 4-truck event. 
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Figure B.35: Parent distribution for Load Effect 2; Length 50 m; 5-truck event. 
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Load Effect 2 Bridge Length: 20 m
1-truck event

Rank Distribution Log-likelihood Parameter vector
1 GEV -250986.273 -0.00677 31.09401 381.4966 

2 Gumbel -250991.584 31.073 381.542 0 

3 Frechet -251206.982 380.258 12.465 0 

4 G.Gamma -254140.967 71.637 11.393 1.201 

5 Normal -255434.561 399.673 1602.788 0 

6 Weibull -262179.115 418.595 9.11 0 

2-truck event
Rank Distribution Log-likelihood Parameter vector

1 GEV -335674.3988 -0.10795 162.662 397.4217 

2 Gumbel -337603.958 169.1 408.312 0 

3 G.Gamma -338299.935 26.435 0.224 0.427 

4 Frechet -344960.407 369.648 2.03 0 

5 Weibull -348274.208 580.324 1.794 0 

6 Normal -358576.542 510.36 92536.91 0 

3-truck event
Rank Distribution Log-likelihood Parameter vector

1 Normal -6643.232 513.57 9975.366 0 

2 G.Gamma -6643.926 3.821 321.856 2.691 

3 GEV -6649.711 0.218 98.419 475.257 

4 Weibull -6668.41 554.485 5.529 0 

5 Gumbel -6726.662 99.611 464.039 0 

6 Frechet -6903.388 455.634 4.53 0 

Table B.5: Maximum likelihood estimates for Load Effect 2; Length 20 m. 
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Load Effect 2 Bridge Length: 30 m
1-truck event

Rank Distribution Log-likelihood Parameter vector
1 GEV -266808.11 -0.033 41.947 512.749 

2 Gumbel -266848.517 42.467 513.495 0 

3 Frechet -266887.278 511.683 12.383 0 

4 G.Gamma -270124.645 64.12 18.885 1.242 

5 Normal -271418.195 538.476 3037.676 0 

6 Weibull -278093.637 564.453 8.926 0 

2-truck event
Rank Distribution Log-likelihood Parameter vector

1 G.Gamma -334782.12 0.843 766.359 4.162 

2 Weibull -334811.812 726.867 3.746 0 

3 Normal -334884.547 656.642 38465.03 0 

4 GEV -334884.797 0.282 197.972 586.837 

5 Gumbel -339308.234 197.217 557.667 0 

6 Frechet -355559.571 515.373 2.168 0 

3-truck event
Rank Distribution Log-likelihood Parameter vector

1 G.Gamma -63113.388 1.892 702.728 3.219 

2 Normal -63116.303 808.576 37261.92 0 

3 GEV -63122.761 0.253 191.744 737.507 

4 Weibull -63168.53 883.706 4.634 0 

5 Gumbel -63804.829 190.237 712.236 0 

6 Frechet -65627.234 686.14 3.324 0 

Table B.6: Maximum likelihood estimates for Load Effect 2; Length 30 m. 
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Load Effect 2 Bridge Length: 40 m
1-truck event

Rank Distribution Log-likelihood Parameter vector
1 GEV -281753.134 -0.069 55.377 687.269 

2 Frechet -281757 686.93 12.456 0 

3 Gumbel -281906.044 56.988 689.361 0 

4 G.Gamma -285495.808 68.83 20.539 1.188 

5 Normal -286878.088 723.285 5637.782 0 

6 Weibull -293548.232 758.644 8.806 0 

2-truck event
Rank Distribution Log-likelihood Parameter vector

1 GEV -351780.611 0.264 273.371 796.142 

2 G.Gamma -351855.778 1.046 979.02 3.504 

3 Weibull -351857.448 994.678 3.601 0 

4 Normal -351964.234 896.301 76167.67 0 

5 Gumbel -355178.094 267.764 758.816 0 

6 Frechet -369839.284 704.672 2.255 0 

3-truck event
Rank Distribution Log-likelihood Parameter vector

1 G.Gamma -333449.564 2.208 947.285 2.763 

2 Normal -333492.006 1196.907 92133.35 0 

3 GEV -333566.086 0.214 296.075 1079.831 

4 Weibull -333870.979 1313.145 4.308 0 

5 Gumbel -336269.53 293.418 1046.603 0 

6 Frechet -345461.829 1003.4 3.123 0 

4-truck event
Rank Distribution Log-likelihood Parameter vector

1 G.Gamma -2237.676 4.335 795.085 2.342 

2 Normal -2237.809 1445.809 90733.62 0 

3 GEV -2240.416 0.189 293.903 1326.59 

4 Weibull -2246.825 1567.09 5.062 0 

5 Gumbel -2258.376 295.736 1297.109 0 

6 Frechet -2311.04 1259.007 3.781 0 

Table B.7: Maximum likelihood estimates for Load Effect 2; Length 40 m. 
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Load Effect 2 Bridge Length: 50 m
1-truck event

Rank Distribution Log-likelihood Parameter vector
1 GEV -294339.931 -0.104 69.818 919.702 

2 Frechet -294359.954 920.74 13.045 0 

3 Gumbel -294654.784 73.127 923.735 0 

4 G.Gamma -298680.041 68.109 31.119 1.228 

5 Normal -300053.901 967.677 9549.83 0 

6 Weibull -306960.142 1013.931 8.994 0 

2-truck event
Rank Distribution Log-likelihood Parameter vector

1 GEV -366657.994 0.27 369.114 1064.172 

2 G.Gamma -366737.552 1.027 1316.776 3.512 

3 Weibull -366738.194 1329.508 3.57 0 

4 Normal -366823.135 1197.642 138005.5 0 

5 Gumbel -370114.356 361.385 1012.489 0 

6 Frechet -385258.176 938.16 2.217 0 

3-truck event
Rank Distribution Log-likelihood Parameter vector

1 G.Gamma -373686.354 2.118 1319.331 2.753 

2 GEV -373706.028 0.228 416.578 1477.941 

3 Normal -373772.676 1639.522 182231 0 

4 Weibull -374072.946 1801.892 4.209 0 

5 Gumbel -376533.007 409.552 1428.359 0 

6 Frechet -386302.208 1366.591 3.054 0 

4-truck event
Rank Distribution Log-likelihood Parameter vector

1 G.Gamma -10021.813 3.054 1317.937 2.514 

2 Normal -10023.647 1975.198 213064.9 0 

3 GEV -10025.445 0.213 449.256 1797.453 

4 Weibull -10043.114 2156.349 4.629 0 

5 Gumbel -10098.711 444.883 1747.254 0 

6 Frechet -10321.597 1688.231 3.509 0 

Table B.8: Maximum likelihood estimates for Load Effect 2; Length 50 m. 
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Load Effect 3 
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Figure B.36: Parent distribution for Load Effect 3; Length 20 m; 1-truck event. 
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Figure B.37: Parent distribution for Load Effect 3; Length 20 m; 2-truck event. 
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Figure B.38: Parent distribution for Load Effect 3; Length 20 m; 3-truck event. 
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Figure B.39: Parent distribution for Load Effect 3; Length 20 m; 4-truck event. 
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Figure B.40: Parent distribution for Load Effect 3; Length 30 m; 1-truck event. 
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Figure B.41: Parent distribution for Load Effect 3; Length 30 m; 2-truck event. 
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Figure B.42: Parent distribution for Load Effect 3; Length 30 m; 3-truck event. 
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Figure B.43: Parent distribution for Load Effect 3; Length 30 m; 4-truck event. 
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Figure B.44: Parent distribution for Load Effect 3; Length 40 m; 1-truck event. 
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Figure B.45: Parent distribution for Load Effect 3; Length 40 m; 2-truck event. 
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Figure B.46: Parent distribution for Load Effect 3; Length 40 m; 3-truck event. 
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Figure B.47: Parent distribution for Load Effect 3; Length 40 m; 4-truck event. 

300 400 500 600 700
0

0.002

0.004

0.006

0.008

0.01

0.012

Data fits

X

P
ro

ba
bi

lit
y 

D
en

si
ty

300 400 500 600 700
−10

0

10

20

30

40
Gumbel Probability Plot

X

−
lo

g(
−

lo
g(

F
))

Figure B.48: Parent distribution for Load Effect 3; Length 50 m; 1-truck event. 
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Figure B.49: Parent distribution for Load Effect 3; Length 50 m; 2-truck event. 
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Figure B.50: Parent distribution for Load Effect 3; Length 50 m; 3-truck event. 

200 400 600 800 10001200
0

0.5

1

1.5

2

2.5

3

x 10
−3 Data fits

X

P
ro

ba
bi

lit
y 

D
en

si
ty

0 500 1000 1500
−5

0

5

10

15

20
Gumbel Probability Plot

X

−
lo

g(
−

lo
g(

F
))

Figure B.51: Parent distribution for Load Effect 3; Length 50 m; 4-truck event. 
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Figure B.52: Parent distribution for Load Effect 3; Length 50 m; 5-truck event. 
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Load Effect 3 Bridge Length: 20 m
1-truck event

Rank Distribution Log-likelihood Parameter vector
1 GEV -255189.441 0.012 34.055 310.293 

2 Gumbel -255193.717 33.91 310.082 0 

3 Frechet -255588.868 308.186 9.379 0 

4 G.Gamma -257127.077 43.326 14.467 1.205 

5 Normal -258394.246 329.755 1804.237 0 

6 Weibull -263066.922 349.064 7.519 0 

2-truck event
Rank Distribution Log-likelihood Parameter vector

1 GEV -306466.627 0.231 108.857 330.973 

2 Normal -306505.14 372.844 12361.33 0 

3 G.Gamma -306524.727 1.431 357.833 2.982 

4 Weibull -306640.239 412.956 3.671 0 

5 Gumbel -309523.22 107.718 317.806 0 

6 Frechet -324054.708 298.032 2.413 0 

3-truck event
Rank Distribution Log-likelihood Parameter vector

1 G.Gamma -10062.004 3.369 259.777 2.449 

2 Normal -10064.815 411.47 8779.707 0 

3 GEV -10066.78 0.204 90.826 374.959 

4 Weibull -10091.874 448.541 4.746 0 

5 Gumbel -10157.864 90.172 365.265 0 

6 Frechet -10421.949 353.672 3.653 0 

Table B.9: Maximum likelihood estimates for Load Effect 3; Length 20 m. 
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Load Effect 3 Bridge Length: 30 m
1-truck event

Rank Distribution Log-likelihood Parameter vector
1 GEV -254079.916 -0.042 32.315 349.349 

2 Gumbel -254136.335 32.864 350.09 0 

3 Frechet -254149.532 348.507 10.966 0 

4 G.Gamma -257099.652 55.424 12.564 1.187 

5 Normal -258471.352 369.491 1809.809 0 

6 Weibull -264168.951 389.242 8.165 0 

2-truck event
Rank Distribution Log-likelihood Parameter vector

1 G.Gamma -314716.091 2.322 292.563 2.104 

2 GEV -314753.91 0.142 123.335 359.799 

3 Normal -315009.552 414.138 17370.08 0 

4 Weibull -315405.164 460.296 3.322 0 

5 Gumbel -316451.521 122.828 350.482 0 

6 Frechet -331023.891 326.588 2.303 0 

3-truck event
Rank Distribution Log-likelihood Parameter vector

1 GEV -98544.904 0.22 111.374 434.148 

2 G.Gamma -98554.499 2.924 324.418 2.505 

3 Normal -98571.982 477.791 13132.57 0 

4 Weibull -98788.137 522.51 4.521 0 

5 Gumbel -99473.741 110.776 421.383 0 

6 Frechet -102492.932 406.922 3.391 0 

4-truck event
Rank Distribution Log-likelihood Parameter vector

1 GEV -321.667 0.156 109.618 474.479 

2 G.Gamma -321.734 17.893 32.012 1.032 

3 Normal -322.605 523.043 14328.5 0 

4 Gumbel -322.865 106.681 465.53 0 

5 Weibull -323.956 570.837 4.612 0 

6 Frechet -328.138 452.554 4.075 0 

Table B.10: Maximum likelihood estimates for Load Effect 3; Length 30 m. 
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Load Effect 3 Bridge Length: 40 m
1-truck event

Rank Distribution Log-likelihood Parameter vector
1 GEV -253423.262 -0.076 31.292 369.517 

2 Frechet -253425.339 369.371 11.842 0 

3 Gumbel -253597.887 32.314 370.82 0 

4 G.Gamma -257102.393 64.17 10.979 1.166 

5 Normal -258519.913 390.094 1813.329 0 

6 Weibull -264721.157 410.052 8.486 0 

2-truck event
Rank Distribution Log-likelihood Parameter vector

1 GEV -328409.794 -0.022 146.421 377.377 

2 Gumbel -328454.1 147.1 379.158 0 

3 G.Gamma -329308.194 16.411 4.391 0.605 

4 Weibull -333877.653 523.396 2.364 0 

5 Normal -336368.712 464.178 40817.6 0 

6 Frechet -339105.664 348.959 2.161 0 

3-truck event
Rank Distribution Log-likelihood Parameter vector

1 G.Gamma -313987.349 2.774 355.427 2.458 

2 GEV -313999.666 0.2 124.719 464.731 

3 Normal -314067.836 515.285 16727.95 0 

4 Weibull -314669.967 565.085 4.316 0 

5 Gumbel -316684.807 124.244 451.741 0 

6 Frechet -326834.604 434.793 3.213 0 

4-truck event
Rank Distribution Log-likelihood Parameter vector

1 GEV -3285.013 0.262 129.65 550.695 

2 G.Gamma -3286.639 2.852 427.934 2.787 

3 Normal -3287.398 598.342 17283.68 0 

4 Weibull -3292.647 650.934 5.01 0 

5 Gumbel -3318.209 126.903 533.202 0 

6 Frechet -3403.014 516.52 3.634 0 

Table B.11: Maximum likelihood estimates for Load Effect 3; Length 40 m. 
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Load Effect 3 Bridge Length: 50 m
1-truck event

Rank Distribution Log-likelihood Parameter vector
1 GEV -253146.443 -0.098 30.738 381.618 

2 Frechet -253153.874 381.895 12.344 0 

3 Gumbel -253424.019 32.087 383.28 0 

4 G.Gamma -257291.224 58.704 15.438 1.249 

5 Normal -258663.543 402.533 1823.776 0 

6 Weibull -265137.187 422.644 8.663 0 

2-truck event
Rank Distribution Log-likelihood Parameter vector

1 GEV -338246.743 -0.136 166.006 390.128 

2 Gumbel -340112.167 174.852 402.958 0 

3 G.Gamma -340349.79 22.886 0.383 0.439 

4 Frechet -345966.934 365.109 2.023 0 

5 Weibull -347386.841 583.287 1.896 0 

6 Normal -355070.09 514.565 86241.37 0 

3-truck event
Rank Distribution Log-likelihood Parameter vector

1 GEV -317306.361 0.199 132.896 489.74 

2 G.Gamma -317339.329 2.98 354.551 2.329 

3 Normal -317471.614 543.762 19167.81 0 

4 Weibull -318099.081 596.882 4.242 0 

5 Gumbel -319815.62 131.959 475.958 0 

6 Frechet -329606.617 457.5 3.185 0 

4-truck event
Rank Distribution Log-likelihood Parameter vector

1 GEV -12523.469 0.23 135.48 579.209 

2 G.Gamma -12527.016 3.988 357.751 2.307 

3 Normal -12533.154 631.787 19529.51 0 

4 Weibull -12562.871 687.716 4.914 0 

5 Gumbel -12625.386 132.529 563.035 0 

6 Frechet -12915.213 546.03 3.748 0 

Table B.12: Maximum likelihood estimates for Load Effect 3; Length 50 m. 
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B.3 Full Simulation Results 

The results of the 1000-day Auxerre simulation, described in Chapter 6 to assess 

the implications of the application of the method of Composite Distribution 

Statistics (CDS), are presented in this section. The parameters of the GEV 

distributions obtained from the Conventional approach are given in Table B.13. 

From the application of CDS, Table B.14 gives the parameters of the individual 

mechanisms determined from the simulation. Following this, Figure B.54 to 

Figure B.65 are presented showing both the overall behaviour of the 

mechanisms and the behaviour in the simulation period. The legend used in 

these figures is given in Figure B.53. For a description of these figures, refer to 

Chapter 6. 

Load Effect 1 Load Effect 2 Load Effect 3 
θ

20 30 40 50 20 30 40 50 20 30 40 50 

ξ 0.123 0.054 0.081 0.081 0.150 0.000 -0.043 0.060 0.092 0.147 0.101 0.076

σ 152.9 258.8 351.5 464.8 46.0 51.3 99.8 178.4 35.6 37.4 40.3 43.5 

µ 3086 5512 7975 10508 805 1131 1657 2382 656 747 800 846 

Table B.13: GEV parameters derived according to the Conventional approach. 

Figure B.53: Legend of parent distribution figures. 
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No. of trucks comprising the event
Effect Length θ 1 2 3 4

ξ 0.085 0.123 0.290 

σ 91.3 152.8 482.1 20 
µ 2209 3086 1891 

ξ 0.098 0.055 0.269 

σ 155.7 259.7 851.7 30 
µ 3858 5509 3429 

ξ 0.104 0.080 0.263 

σ 222.0 347.5 1111.4 40 
µ 5516 7958 5914 

ξ 0.107 0.087 0.211 0.247 

σ 287.5 450.3 1043.0 1411.5 

Lo
ad

Ef
fe

ct
1

50 
µ 7174 10441 8988 7518 

ξ 0.094 0.149 0.273 

σ 23.3 46.0 119.4 20 
µ 589 805 482 

ξ 0.079 0.029 0.278 

σ 31.9 49.3 185.5 30 
µ 798 1127 845 

ξ 0.083 0.087 0.191 0.168 

σ 43.0 64.9 194.2 304.1 40 
µ 1073 1596 1555 1337 

ξ 0.092 0.062 0.210 0.200 

σ 56.8 85.0 229.1 426.2 

Lo
ad

Ef
fe

ct
2

50 
µ 1428 2177 2348 1829 

ξ -0.032 0.092 0.182 

σ 14.5 35.6 85.2 20 
µ 493 656 388 

ξ -0.018 0.146 0.284 

σ 15.8 37.3 102.2 30 
µ 543 746 534 

ξ 0.000 0.107 0.236 0.235 

σ 17.4 39.2 79.0 126.9 40 
µ 570 793 695 564 

ξ 6.488E-03 0.053 0.207 0.214 

σ 18.4 37.6 66.7 138.1 

Lo
ad

Ef
fe

ct
3

50 
µ 587 822 798 581 

Table B.14: GEV 1000-day simulation daily maximum load effect parameters. 
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Figure B.54: 1000-day Auxerre simulation results: Load Effect 1; Length 20 m. 
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Figure B.55: 1000-day Auxerre simulation results: Load Effect 1; Length 30 m. 
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Figure B.56: 1000-day Auxerre simulation results: Load Effect 1; Length 40 m. 
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Figure B.57: 1000-day Auxerre simulation results: Load Effect 1; Length 50 m. 
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Figure B.58: 1000-day Auxerre simulation results: Load Effect 2; Length 20 m. 
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Figure B.59: 1000-day Auxerre simulation results: Load Effect 2; Length 30 m. 
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Figure B.60: 1000-day Auxerre simulation results: Load Effect 2; Length 40 m. 
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Figure B.61: 1000-day Auxerre simulation results: Load Effect 2; Length 50 m. 
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Figure B.62: 1000-day Auxerre simulation results: Load Effect 3; Length 20 m. 
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Figure B.63: 1000-day Auxerre simulation results: Load Effect 3; Length 30 m. 
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Figure B.64: 1000-day Auxerre simulation results: Load Effect 3; Length 40 m. 
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Figure B.65: 1000-day Auxerre simulation results: Load Effect 3; Length 50 m. 
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B.4 GEV Parent Distribution Parameters 

Chapter 6 describes several variations of GEV distributions of load effect. 

Firstly, there are the GEV distributions determined from the load effect study 

of Section 6.2 – these are given in Table B.15. The corresponding ‘normalized’ 

parameters are given in Table B.16 – the normalizing process is explained in the 

next subsection. Table B.17 gives the ‘reverted’ parent distributions (explained 

below) from Table B.14 - the GEV parameters of daily maximum load effect 

determined from the 1000-day simulation of Auxerre traffic. The corresponding 

normalized parameter values for this reverted parent distribution are given in 

Table B.18. 

Normalized parameters and length ratio 

The normalization referred to in Chapter 6 is as follows. Denoting the 

parameters of the GEV distribution of the j-truck event as jξ , jσ , and jµ ,

normalization to a 2-truck event location value of 100 is done by: 

 

* * * *

2

; cov ; 100;

covwhere 

j
j j j j j j

j
j

j

µ
ξ ξ σ µ µ

µ
σ
µ

= = ⋅ = ⋅

=
(B.16) 

It is by this method that the impact of the load effect type and bridge length 

can be eliminated, and insight into the relationship between the types of loading 

event can be gained.  

The length ratio given in the tables of normalized values allows separate 

quantification of the effect of bridge length. For a bridge length of L and a j-

truck event, whose normalized GEV parameters are given as L
jξ , L

jσ , and L
jµ
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(note that the asterisk notation has been removed for clarity), the length ratio,  

L
jc , is given as: 

 20 ; 20,30, 40 50for  and 
L
jL

j
j

c L
µ
µ

= =  (B.17) 

Also note, that in the tables presented, only the length ratio corresponding to 2-

truck events, 2
Lc , has been given. 

Reverted parameters 

The process described in B.1 applies for all +R values of n. Therefore it is 

possible to calculate a parent GEV distribution from which an observed 

distribution of maxima is realised. 

Given the observed GEV distribution, ( )* *;G x θ , for a block size of m, the 

parent distribution can be expressed as a GEV distribution, ( );G x θ , such that: 

 
1*

*

( ) ( )
( )

m

n n

G x G x
G a b x

−

=

= +
 (B.18) 

Therefore, equation (B.15) applies. Thus, the parameters of the parent GEV 

distribution are given by: 

 * *

* *
* *

*

1; ; 1
n nξ ξ

σ σξ ξ σ µ µ
ξ
 = = = − + 
 

 (B.19) 

where 1n m−= . It is in this manner that the ‘reverted’ parent distributions from 

which the ‘measured’ GEV parameters for daily maximum load effect are 

determined. For these transforms, the average number of loading events per 

day, for each event-type, is taken from the results of the 1000-day Auxerre 

simulation. 
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No. of trucks comprising the event
Effect Length θ 1 2 3 4

ξ -0.019 0.216 0.232 

σ 132.3 520.4 444.5 20 
µ 1368 1560 1767 

ξ -0.083 0.215 0.232 

σ 202.1 919.7 841.9 30 
µ 2442 2708 3211 

ξ -0.112 0.21 0.243 0.153 

σ 274.4 1297.0 1259.7 1192.8 40 
µ 3516 3817 4734 5510 

ξ -0.126 0.201 0.235 0.257 

σ 348.3 1655.6 1689.6 1676.8 

Lo
ad

Ef
fe

ct
1

50 
µ 4589 4890 6258 7369 

ξ -0.00677 -0.10795 0.218 

σ 31.1 162.7 98.4 20 
µ 381 397 475 

ξ -0.033 0.282 0.253 

σ 41.9 198.0 191.7 30 
µ 513 587 738 

ξ -0.069 0.264 0.214 0.189 

σ 55.4 273.4 296.1 293.9 40 
µ 687 796 1080 1327 

ξ -0.104 0.27 0.228 0.213 

σ 69.8 369.1 416.6 449.3 

Lo
ad

Ef
fe

ct
2

50 
µ 920 1064 1478 1797 

ξ 0.012 0.231 0.204 

σ 34.1 108.9 90.8 20 
µ 310 331 375 

ξ -0.042 0.142 0.22 0.156 

σ 32.3 123.3 111.4 109.6 30 
µ 349 360 434 474 

ξ -0.076 -0.022 0.2 0.262 

σ 31.3 146.4 124.7 129.7 40 
µ 370 377 465 551 

ξ -0.098 -0.136 0.199 0.23 

σ 30.7 166.0 132.9 135.5 

Lo
ad

Ef
fe

ct
3

50 
µ 382 390 490 579 

Table B.15: GEV parameters of parent load effect distributions. 
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No. of trucks comprising event
Effect Length θ 1 2 3 4

Length

Ratio
ξ -0.019 0.216 0.232 

σ 8.5 33.4 28.5 20 
µ 88 100 113 100 

ξ -0.083 0.215 0.232 

σ 7.5 34.0 31.1 30 
µ 90 100 119 174 

ξ -0.112 0.210 0.243 0.153   

σ 7.2 34.0 33.0 31.3   40 
µ 92 100 124 144 245 

ξ -0.126 0.201 0.235 0.257   

σ 7.1 33.9 34.5 34.3   

Lo
ad

Ef
fe

ct
1

50 
µ 94 100 128 151 314 

ξ -0.007 -0.108 0.218 

σ 7.8 40.9 24.8 20 
µ 96 100 120 100 

ξ -0.033 0.282 0.253 

σ 7.1 33.7 32.7 30 
µ 87 100 126 148 

ξ -0.069 0.264 0.214 0.189   

σ 7.0 34.3 37.2 36.9   40 
µ 86 100 136 167 200 

ξ -0.104 0.270 0.228 0.213   

σ 6.6 34.7 39.1 42.2   

Lo
ad

Ef
fe

ct
2

50 
µ 86 100 139 169 268 

ξ 0.019 0.192 0.218 

σ 10.7 40.3 32.0 20 
µ 116 100 118 100 

ξ -0.049 0.192 0.199 0.196   

σ 9.1 41.8 33.2 26.1   30 
µ 122 100 123 141 109 

ξ -0.074 0.194 0.194 0.207   

σ 8.5 42.3 33.7 28.6   40 
µ 123 100 127 150 114 

ξ -0.094 0.213 0.177 0.185   

σ 8.1 42.1 33.9 29.3   

Lo
ad

Ef
fe

ct
3

50 
µ 122 100 128 155 118 

Table B.16: Normalized GEV parameters of parent load effect distributions. 
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No. of trucks comprising the event
Effect Length θ 1 2 3 4

ξ 0.085 0.123 0.290 

σ 47.0 81.6 978.3 20 
µ 2728 3666 179 

ξ 0.098 0.055 0.269 

σ 72.5 192.8 873.1 30 
µ 4709 6727 3349 

ξ 0.104 0.080 0.370 

σ 97.9 219.5 701.1 40 
µ 6708 9553 7172 

ξ 0.107 0.087 0.318 0.247 

σ 124.0 267.0 512.1 2578.1 

Lo
ad

Ef
fe

ct
1

50 
µ 8709 12546 10773 2788 

ξ 0.094 0.149 0.278 

σ 11.2 21.6 187.1 20 
µ 717 968 254 

ξ 0.079 0.029 0.378 

σ 17.3 42.0 150.1 30 
µ 984 1382 958 

ξ 0.083 0.087 0.191 0.180 

σ 22.5 38.1 126.8 493.8 40 
µ 1320 1905 1908 240 

ξ 0.092 0.062 0.264 0.200 

σ 27.8 57.0 103.5 567.8 

Lo
ad

Ef
fe

ct
2

50 
µ 1745 2628 2844 1120 

ξ -0.032 0.092 0.182 

σ 18.6 22.3 101.6 20 
µ 621 802 297 

ξ -0.018 0.146 0.335 

σ 18.2 16.7 70.1 30 
µ 676 887 637 

ξ 0.000 0.107 0.286 0.235 

σ 17.5 20.8 39.3 240.1 40 
µ 707 965 838 81 

ξ 0.007 0.053 0.207 0.214 

σ 17.5 26.9 34.1 185.9 

Lo
ad

Ef
fe

ct
3

50 
µ 728 1021 956 358 

Table B.17: Reverted Auxerre 1000-day simulation parent distributions. 
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No. of trucks comprising event
Effect Length θ 1 2 3 4

Length 

Ratio
ξ 0.085 0.123 0.290 

σ 1.3 2.2 26.7 20 
µ 74 100 5 100 

ξ 0.098 0.055 0.269 

σ 1.1 2.9 13.0 30 
µ 70 100 50 183 

ξ 0.104 0.080 0.370 

σ 1.0 2.3 7.3 40 
µ 70 100 75 261 

ξ 0.107 0.087 0.318 0.247   

σ 1.0 2.1 4.1 20.5   

Lo
ad

Ef
fe

ct
1

50 
µ 69 100 86 22 342 

ξ 0.094 0.149 0.278 

σ 1.2 2.2 19.3 20 
µ 74 100 26 100 

ξ 0.079 0.029 0.378 

σ 1.2 3.0 10.9 30 
µ 71 100 69 143 

ξ 0.083 0.087 0.191 0.180   

σ 1.2 2.0 6.7 25.9   40 
µ 69 100 100 13 197 

ξ 0.092 0.062 0.264 0.200   

σ 1.1 2.2 3.9 21.6   

Lo
ad

Ef
fe

ct
2

50 
µ 66 100 108 43 271 

ξ -0.032 0.092 0.182 

σ 2.3 2.8 12.7 20 
µ 77 100 37 100 

ξ -0.018 0.146 0.335 

σ 2.1 1.9 7.9 30 
µ 76 100 72 111 

ξ 0.000 0.107 0.286 0.235   

σ 1.8 2.2 4.1 24.9   40 
µ 73 100 87 8 120 

ξ 0.007 0.053 0.207 0.214   

σ 1.7 2.6 3.3 18.2   

Lo
ad

Ef
fe

ct
3

50 
µ 71 100 94 35 127 

Table B.18: Normalized GEV parameters of reverted load effect distributions. 
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“Everything should be made as simple as possible, 
but not simpler”     - Albert Einstein 
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Appendix C - PREDICTIVE LIKELIHOOD 

C.1 Application 

The following plots are the output from the predictive likelihood algorithm. In 

the main plot, on Gumbel probability paper, the large red dot describes the 

locations of the predictands evaluated. The CDS and component distributions 

combine to maximize the predictive likelihood function for each predictand and 

can be seen to do so. In the PDF plots, the red line represents the predictands; 

for each predictand the component PDFs are also plot. It is clear to see that 

there is little variation in PDFs, in spite of the significant variation in likelihood 

of each predictand. The final plot shows the relative predictive likelihood for 

each predictand. These points are the final predictive likelihood distribution and 

it is to these that the GEV predictive likelihood distribution is fitted. 

The legend used in the Gumbel plots is given by Figure C.1. 

Figure C.1: Legend for the Gumbel plots of the following figures. 
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Figure C.2: Load Effect 1; Length 20 m. 

Figure C.3: Load Effect 1; Length 30 m. 
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Figure C.4: Load Effect 1; Length 40 m. 

Figure C.5: Load Effect 1; Length 50 m. 
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Figure C.6: Load Effect 2; Length 20 m. 

Figure C.7: Load Effect 2; Length 30 m. 
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Figure C.8: Load Effect 2; Length 40 m. 

Figure C.9: Load Effect 2; Length 50 m. 
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Figure C.10: Load Effect 3; Length 20 m. 

Figure C.11: Load Effect 3; Length 30 m. 
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Figure C.12: Load Effect 3; Length 40 m. 

Figure C.13: Load Effect 3; Length 50 m. 
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C.2 GEV Fits 

GEV Fits Load 

Effect 

Bridge 

Length (m) ξ σ µ

20 0.2028 66.18 3953 

30 0.1769 189.7 7475 

40 0.08195 233.9 10320 
1

50 -0.05175 298.9 13460 

20 0.1208 15.64 1043 

30 0.09644 44.24 1552 

40 0.2478 150.1 2595 
2

50 0.2671 143.1 3597 

20 0.1503 20.65 886.8 

30 0.1278 14.48 940.4 

40 -0.1132 46.14 1069 
3

50 -0.01964 41.21 1158 

Table C.1: Table of GEV parameters of fits to predictive likelihood distribution. 
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C.3 Results 

Characteristic Load Effect Percentage difference1
Load 

Effect

Bridge 

Length 

(m) PL2 GEV3 CDS4 PL CDS 

20 4074 4073 4067 0.0 -0.3 

30 7830 7827 7852 0.0 0.3 

40 10814 10801 10701 0.1 -1.0 
1

50 14150 14173 13893 -0.2 -2.2 

20 1074 1074 1067 0.0 -0.8 

30 1636 1641 1643 -0.3 0.1 

40 2841 2854 2921 -0.5 -1.5 
2

50 3825 3839 3785 -0.4 -1.5 

20 927 926 922 0.1 -0.6 

30 969 969 963 0.0 -0.9 

40 1153 1187 1079 -2.9 -9.3 
3

50 1235 1253 1185 -1.4 -5.5 
1 Relative to GEV PL fit;  

2 90-percentile of 100-year distribution based on predictive likelihood points; 

3 90-percentile of 100-year distribution GEV fit to predictive likelihood points; 

4 1000-year return level based on CDS extrapolation. 

Table C.2: Table of predictive likelihood results. 
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